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Preface

In the past 15 years, natural language processing and computational linguistics have
considerably matured. The move has mainly been driven by the massive increase
of textual and spoken data and the need to process them automatically. This dra-
matic growth of available data spurred the design of new concepts and methods, or
their improvement, so that they could scale up from a few laboratory prototypes to
proven applications used by millions of people. Concurrently, speed and capacity of
machines became an order of magnitude larger enabling us to process gigabytes of
data and billions of words in a reasonable time, to train, test, retrain, and retest algo-
rithms like never before. Although systems entirely dedicated to language processing
remain scarce, there are now scores of applications that, to some extent, embed lan-
guage processing techniques.

The industry trend, as well as the user’s wishes, towards information systems
able to process textual data has made language processing a new requirement for
many computer science students. This has shifted the focus of textbooks from readers
being mostly researchers or graduate students to a larger public, from readings by
specialists to pragmatism and applied programming. Natural language processing
techniques are not completely stable, however. They consist of a mix that ranges
from well mastered and routine to rapidly changing. This makes the existence of a
new book an opportunity as well as a challenge.

This book tries to take on this challenge and find the right balance. It adopts a
hands-on approach. It is a basic observation that many students have difficulties to go
from an algorithm exposed using pseudo-code to a runnable program. I did my best
to bridge the gap and provide the students with programs and ready-made solutions.
The book contains real code the reader can study, run, modify, and run again. I chose
to write examples in two languages to make the algorithms easy to understand and
encode: Perl and Prolog.

One of the major driving forces behind the recent improvements in natural lan-
guage processing is the increase of text resources and annotated data. The huge
amount of texts made available by Internet and the never-ending digitization led
many of the practitioners to evolve from theory-oriented, armchair linguists to fran-
tic empiricists. This books attempts as well as it can to pay attention to this trend and
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stresses the importance of corpora, annotation, and annotated corpora. It also tries to
go beyond English-only and expose examples in two other languages, namely French
and German.

The book was designed and written for a quarter or semester course. At Lund,
I used it when it was still under the form of lecture notes in the EDA171 course.
It comes with a companion web site where slides, programs, corrections, an addi-
tional chapter, and Internet pointers are available: www.cs.lth.se/˜pierre/ilppp/. All
the computer programs should run with Perl available from www.perl.com or Pro-
log. Although I only tested the programs with SWI Prolog available from www.swi-
prolog.org, any Prolog compatible with the ISO reference should apply.

Many people helped me during the last 10 years when this book took shape, step-
by-step. I am deeply indebted to my colleagues and to my students in classes at Caen,
Nottingham, Stafford, Constance, and now in Lund. Without them, it could never
have existed. I would like most specifically to thank the PhD students I supervised,
in chronological order, Pierre-Olivier El Guedj, Christophe Godéreaux, Dominique
Dutoit, and Richard Johansson.

Finally, my acknowledgments would not be complete without the names of the
people I most cherish and who give meaning to my life, my wife, Charlotte, and my
children, Andreas and Louise.

Lund, Pierre Nugues
January 2006
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1

An Overview of Language Processing

1.1 Linguistics and Language Processing

Linguistics is the study and the description of human languages. Linguistic theories
on grammar and meaning have been developed since ancient times and the Middle
Ages. However, modern linguistics originated at the end of the nineteenth century
and the beginning of the twentieth century. Its founder and most prominent figure was
probably Ferdinand de Saussure (1916). Over time, modern linguistics has produced
an impressive set of descriptions and theories.

Computational linguistics is a subset of both linguistics and computer science.
Its goal is to design mathematical models of language structures enabling the au-
tomation of language processing by a computer. From a linguist’s viewpoint, we
can consider computational linguistics as the formalization of linguistic theories and
models or their implementation in a machine. We can also view it as a means to
develop new linguistic theories with the aid of a computer.

From an applied and industrial viewpoint, language and speech processing,
which is sometimes referred to as natural language processing (NLP) or natural lan-
guage understanding (NLU), is the mechanization of human language faculties. Peo-
ple use language every day in conversations by listening and talking, or by reading
and writing. It is probably our preferred mode of communication and interaction.
Ideally, automated language processing would enable a computer to understand texts
or speech and to interact accordingly with human beings.

Understanding or translating texts automatically and talking to an artificial con-
versational assistant are major challenges for the computer industry. Although this
final goal has not been reached yet, in spite of constant research, it is being ap-
proached every day, step-by-step. Even if we have missed Stanley Kubrick’s predic-
tion of talking electronic creatures in the year 2001, language processing and under-
standing techniques have already achieved results ranging from very promising to
near perfect. The description of these techniques is the subject of this book.
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1.2 Applications of Language Processing

At first, language processing is probably easier understood by the description of a
result to be attained rather than by the analytical definition of techniques. Ideally,
language processing would enable a computer to analyze huge amounts of text and to
understand them; to communicate with us in a written or a spoken way; to capture our
words whatever the entry mode: through a keyboard or through a speech recognition
device; to parse our sentences; to understand our utterances, to answer our questions,
and possibly to have a discussion with us – the human beings.

Language processing has a history nearly as old as that of computers and com-
prises a large body of work. However, many early attempts remained in the stage of
laboratory demonstrations or simply failed. Significant applications have been slow
to come, and they are still relatively scarce compared with the universal deployment
of some other technologies such as operating systems, databases, and networks. Nev-
ertheless, the number of commercial applications or significant laboratory prototypes
embedding language processing techniques is increasing. Examples include:

• Spelling and grammar checkers. These programs are now ubiquitous in text pro-
cessors, and hundred of millions of people use them every day. Spelling checkers
are based on computerized dictionaries and remove most misspellings that occur
in documents. Grammar checkers, although not perfect, have improved to a point
that many users could not write a single e-mail without them. Grammar checkers
use rules to detect common grammar and style errors (Jensen et al. 1993).

• Text indexing and information retrieval from the Internet. These programs are
among the most popular of the Web. They are based on spiders that visit Internet
sites and that download texts they contain. Spiders track the links occurring on
the pages and thus explore the Web. Many of these systems carry out a full text
indexing of the pages. Users ask questions and text retrieval systems return the
Internet addresses of documents containing words of the question. Using statis-
tics on words or popularity measures, text retrieval systems are able to rank the
documents (Salton 1988, Brin and Page 1998).

• Speech dictation of letters or reports. These systems are based on speech recog-
nition. Instead of typing using a keyboard, speech dictation systems allow a user
to dictate reports and transcribe them automatically into a written text. Systems
like IBM’s ViaVoice have a high performance and recognize English, French,
German, Spanish, Italian, Japanese, Chinese, etc. Some systems transcribe radio
and TV broadcast news with a word-error rate lower than 10% (Nguyen et al.
2004).

• Voice control of domestic devices such as videocassette recorders or disc chang-
ers (Ball et al. 1997). These systems aim at being embedded in objects to provide
them with a friendlier interface. Many people find electronic devices complicated
and are unable to use them satisfactorily. How many of us are tape recorder illit-
erates? A spoken interface would certainly be an easier means to control them.
Although there are many prototypes, few systems are commercially available yet.
One challenge they still have to overcome is to operate in noisy environments that
impair speech recognition.
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• Interactive voice response applications. These systems deliver information over
the telephone using speech synthesis or prerecorded messages. In more tradi-
tional systems, users interact with the application using touch-tone telephones.
More advanced servers have a speech recognition module that enables them to
understand spoken questions or commands from users. Early examples of speech
servers include travel information and reservation services (Mast et al. 1994,
Sorin et al. 1995). Although most servers are just interfaces to existing databases
and have limited reasoning capabilities, they have spurred significant research on
dialogue, speech recognition and synthesis.

• Machine translation. Research on machine translation is one of the oldest do-
mains of language processing. One of its outcomes is the venerable SYSTRAN
program that started with translations between English and Russian. Since then,
SYSTRAN has been extended to many other languages. Another pioneer exam-
ple is the Spoken Language Translator that translated spoken English into spo-
ken Swedish in a restricted domain in real time (Agnäs et al. 1994, Rayner et al.
2000).

• Conversational agents. Conversational agents are elaborate dialogue systems that
have understanding faculties. An example is TRAINS that helps a user plan a
route and the assembling trains: boxcars and engines to ship oranges from a
warehouse to an orange juice factory (Allen et al. 1995). Ulysse is another ex-
ample that uses speech to navigate into virtual worlds (Godéreaux et al. 1996,
Godéreaux et al. 1998).

Some of these applications are widespread, like spelling and grammar checkers.
Others are not yet ready for an industrial exploitation or are still too expensive for
popular use. They generally have a much lower distribution. Unlike other computer
programs, results of language processing techniques rarely hit a 100% success rate.
Speech recognition systems are a typical example. Their accuracy is assessed in sta-
tistical terms. Language processing techniques become mature and usable when they
operate above a certain precision and at an acceptable cost. However, common to
these techniques is that they are continuously improving and they are rapidly chang-
ing our way of interacting with machines.

1.3 The Different Domains of Language Processing

Historically linguistics has been divided into disciplines or levels, which go from
sounds to meaning. Computational processing of each level involves different tech-
niques such as signal and speech processing, statistics, pattern recognition, parsing,
first-order logic, and automated reasoning.

A first discipline of linguistics is phonetics. It concerns the production and per-
ception of acoustic sounds that form the speech signal. In each language, sounds can
be classified into a finite set of phonemes. Traditionally, they include vowels: a, e, i,
o; and consonants: p, f, r, m. Phonemes are assembled into syllables: pa, pi, po, to
build up the words.
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A second level concerns the words. The word set of a language is called a lexi-
con. Words can appear under several forms, for instance, the singular and the plural
forms. Morphology is the study of the structure and the forms of a word. Usually a
lexicon consists of root words. Morphological rules can modify or transform the root
words to produce the whole vocabulary.

Syntax is a third discipline in which the order of words in a sentence and their
relationships is studied. Syntax defines word categories and functions. Subject, verb,
object is a sequence of functions that corresponds to a common order in many Eu-
ropean languages including English and French. However, this order may vary, and
the verb is often located at the end of the sentence in German. Parsing determines
the structure of a sentence and assigns functions to words or groups of words.

Semantics is a fourth domain of linguistics. It considers the meaning of words
and sentences. The concept of “meaning” or “signification” can be controversial.
Semantics is differently understood by researchers and is sometimes difficult to de-
scribe and process. In a general context, semantics could be envisioned as a medium
of our thought. In applications, semantics often corresponds to the determination of
the sense of a word or the representation of a sentence in a logical format.

Pragmatics is a fifth discipline. While semantics is related to universal defini-
tions and understandings, pragmatics restricts it – or complements it – by adding a
contextual interpretation. Pragmatics is the meaning of words and sentences in spe-
cific situations.

The production of language consists of a stream of sentences that are linked to-
gether to form a discourse. This discourse is usually aimed at other people who
can answer – it is to be hoped – through a dialogue. A dialogue is a set of linguis-
tic interactions that enables the exchange of information and sometimes eliminates
misunderstandings or ambiguities.

1.4 Phonetics

Sounds are produced through vibrations of the vocal cords. Several cavities and or-
gans modify vibrations: the vocal tract, the nose, the mouth, the tongue, and the teeth.
Sounds can be captured using a microphone. They result in signals such as that in
Fig. 1.1.

Fig. 1.1. A speech signal corresponding to This is [DIs Iz].
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A speech signal can be sampled and digitized by an analog-to-digital converter.
It can then be processed and transformed by a Fourier analysis (FFT) in a moving
window, resulting in spectrograms (Figs. 1.2 and 1.3). Spectrograms represent the
distribution of speech power within a frequency domain ranging from 0 to 10,000 Hz
over time. This frequency domain corresponds roughly to the sound production pos-
sibilities of human beings.

Fig. 1.2. A spectrogram corresponding to the word serious [sI@ri@s].

Fig. 1.3. A spectrogram of the French phrase C’est par là [separla] ‘It is that way’.



6 1 An Overview of Language Processing

Phoneticians can “read” spectrograms, that is, split them into a sequence of rel-
atively regular – stationary – patterns. They can then annotate the corresponding
segments with phonemes by recognizing their typical patterns.

A descriptive classification of phonemes includes:

• Simple vowels such as /I/, /a/, and /E/, and nasal vowels in French such as /Ã/
and /Õ/, which appear on the spectrogram as a horizontal bar – the fundamental
frequency – and several superimposed horizontal bars – the harmonics.

• Plosives such as /p/ and /b/ that correspond to a stop in the airflow and then a
very short and brisk emission of air from the mouth. The air release appears as a
vertical bar from 0 to 5,000 Hz.

• Fricatives such as /s/ and /f/ that appear as white noise on the spectrogram, that
is, as a uniform gray distribution. Fricatives sounds a bit like a loudspeaker with
an unplugged signal cable.

• Nasals and approximants such as /m/, /l/, and /r/ are more difficult to spot and
and are subject to modifications according to their left and right neighbors.

Phonemes are assembled to compose words. Pronunciation is basically carried
out though syllables or diphonemes in European languages. These are more or less
stressed or emphasized, and are influenced by neighboring syllables.

The general rhythm of the sentence is the prosody. Prosody is quite different
from English to French and German and is an open subject of research. It is related
to the length and structure of sentences, to questions, and to the meaning of the
words.

Speech synthesis uses signal processing techniques, phoneme models, and letter-
to-phoneme rules to convert a text into speech and to read it in a loud voice. Speech
recognition does the reverse and transcribes speech into a computer-readable text.
It also uses signal processing and statistical techniques including Hidden Markov
models and language models.

1.5 Lexicon and Morphology

The set of available words in a given context makes up a lexicon. It varies from
language to language and within a language according to the context: jargon, slang,
or gobbledygook. Every word can be classified through a lexical category or part
of speech such as article, noun, verb, adjective, adverb, conjunction, preposition, or
pronoun. Most of the lexical entities come from four categories: noun, verb, adjec-
tive, and adverb. Other categories such as articles, pronouns, or conjunctions have
a limited and stable number of elements. Words in a sentence can be annotated –
tagged – with their part of speech.

For instance, the simple sentences in English, French, and German:

The big cat ate the gray mouse
Le gros chat mange la souris grise
Die große Katze ißt die graue Maus
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are annotated as:

The/article big/adjective cat/noun ate/verb the/article gray/adjective
mouse/noun
Le/article gros/adjectif chat/nom mange/verbe la/article souris/nom
grise/adjectif
Die/Artikel große/Adjektiv Katze/Substantiv ißt/Verb die/Artikel
graue/Adjektiv Maus/Substantiv

Morphology is the study of how root words and affixes – the morphemes – are
composed to form words. Morphology can be divided into inflection and derivation:

• Inflection is the form variation of a word under certain grammatical conditions.
In European languages, these conditions consist notably of the number, gender,
conjugation, or tense (Table 1.1).

• Derivation combines affixes to an existing root or stem to form a new word.
Derivation is more irregular and complex than inflection. It often results in a
change in the part of speech for the derived word (Table 1.2).

Most of the inflectional morphology of words can be described through morpho-
logical rules, possibly with a set of exceptions. According to the rules, a morpholog-
ical parser splits each word as it occurs in a text into morphemes – the root word and
the affixes. When affixes have a grammatical content, morphological parsers gener-
ally deliver this content instead of the raw affixes (Table 1.3).

Morphological parsing operates on single words and does not consider the sur-
rounding words. Sometimes, the form of a word is ambiguous. For instance, worked
can be found in he worked (to work and preterit) or he has worked (to work and past

Table 1.1. Grammatical features that modify the form of a word.

Features Values English French German
Number singular a car une voiture ein Auto

plural two cars deux voitures zwei Autos
Gender masculine he il er

feminine she elle sie
neuter it es

Conjugation infinitive to work travailler arbeiten
and finite he works il travaille er arbeitet
tense gerund working travaillant arbeitend

Table 1.2. Examples of word derivations.

Words Derived words
English real/adjective really/adverb
French courage/noun courageux/adjective
German Der Mut/noun mutig/adjective
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Table 1.3. Decomposition of inflected words into a root and affixes.

Words Roots and affixes Lemmas and grammatical interpretations
English worked work + ed work + verb + preterit
French travaillé travaill + é travailler + verb + past participle
German gearbeitet ge + arbeit + et arbeiten + verb + past participle

participle). Another processing stage is necessary to remove the ambiguity and to
assign (to annotate) each word with a single part-of-speech tag.

A lexicon may simply be a list of all the inflected word forms – a wordlist –
as they occur in running texts. However, keeping all the forms, for instance, work,
works, worked, generates a useless duplication. For this reason, many lexicons re-
tain only a list of canonical words: the lemmas. Lemmas correspond to the entries
of most ordinary dictionaries. Lexicons generally contain other features, such as the
phonetic transcription, part of speech, morphological type, and definition, to facili-
tate additional processing. Lexicon building involves collecting most of the words of
a language or of a domain. It is probably impossible to build an exhaustive dictionary
since new words are appearing every day.

Morphological rules enable us to generate all the word forms from a lexicon.
Morphological parsers do the reverse operation and retrieve the word root and its
affixes from its inflected or derived form in a text. Morphological parsers use finite-
state automaton techniques. Part-of-speech taggers disambiguate the possible multi-
ple readings of a word. They also use finite-state automata or statistical techniques.

1.6 Syntax

Syntax governs the formation of a sentence from words. Syntax is sometimes com-
bined with morphology under the term morphosyntax. Syntax has been a central
point of interest of linguistics since the Middle Ages, but it probably reached an
apex in the 1970s, when it captured an overwhelming attention in the linguistics
community.

1.6.1 Syntax as Defined by Noam Chomsky

Chomsky (1957) had a determining influence in the study of language, and his views
have fashioned the way syntactic formalisms are taught and used today. Chomsky’s
theory postulates that syntax is independent from semantics and can be expressed in
terms of logic grammars. These grammars consist of a set of rules that describe the
sentence structure of a language. In addition, grammar rules can generate the whole
sentence set – possibly infinite – of a definite language.

Generative grammars consist of syntactic rules that fractionate a phrase into sub-
phrases and hence describe a sentence composition in terms of phrase structure. Such
rules are called phrase-structure rules. An English sentence typically comprises



1.6 Syntax 9

two main phrases: a first one built around a noun called the noun phrase, and a sec-
ond one around the main verb called the verb phrase. Noun and verb phrases are
rewritten into other phrases using other rules and by a set of terminal symbols repre-
senting the words.

Formally, a grammar describing a very restricted subset of English, French, or
German phrases could be the following rule set:

• A sentence consists of a noun phrase and a verb phrase.
• A noun phrase consists of an article and a noun.
• A verb phrase consists of a verb and a noun phrase.

A very limited lexicon of the English, French, or German words could be made of:

• articles such as the, le, la, der, den
• nouns such as boy, garçon, Knabe
• verbs such as hit, frappe, trifft

This grammar generates sentences such as:

The boy hit the ball
Le garçon frappe la balle
Der Knabe trifft den Ball

but also incorrect or implausible sequences such as:

The ball hit the ball
*Le balle frappe la garçon
*Das Ball trifft den Knabe

Linguists use an asterisk (*) to indicate an ill-formed grammatical construction
or a nonexistent word. In the French and German sentences, the articles must agree
with their nouns in gender, number, and case (for German). The correct sentences
are:

La balle frappe le garçon
Der Ball trifft den Knaben

Trees can represent the syntactic structure of sentences (Fig. 1.4–1.6) and reflect
the rules involved in sentence generation.

Moreover, Chomsky’s formalism enables some transformations: rules can be set
to carry out the building of an interrogative sentence from a declaration, or the build-
ing of a passive form from an active one.

Parsing is the reverse of generation. A grammar, a set of phrase-structure rules,
accepts syntactically correct sentences and determines their structure. Parsing re-
quires a mechanism to search the rules that describe the sentence’s structure. This
mechanism can be applied from the sentence’s words up to a rule describing the
sentence’s structure. This is bottom-up parsing. Rules can also be searched from a
sentence structure rule down to the sentence’s words. This corresponds to top-down
parsing.
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sentence

noun phrase verb phrase

article noun verb noun phrase

article noun

The boy hit the ball

Fig. 1.4. Tree structure of The boy hit the ball.

sentence

noun phrase verb phrase

article noun verb noun phrase

article noun

Le garçon frappe la balle

Fig. 1.5. Tree structure of Le garçon frappe la balle.

sentence

noun phrase verb phrase

article noun verb noun phrase

article noun

Der Knabe trifft den Ball

Fig. 1.6. Tree structure of Der Knabe trifft den Ball.

1.6.2 Syntax as Relations and Dependencies

Before Chomsky, pupils and students learned syntax (and still do so) mainly in terms
of functions and relations between the words. A sentence’s classical parsing consists
in annotating words using parts of speech and in identifying the main verb. The
main verb is the pivot of the sentence, and the principal grammatical functions are
determined relative to it. Parsing consists then in grouping words to form the subject
and the object, which are the two most significant functions in addition to the verb.
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In the sentence The boy hit the ball, the main verb is hit, the subject of hit is the
boy, and its object is the ball (Fig. 1.7).

The boy hit the ball

Subject Object
Verb

Fig. 1.7. Grammatical relations in the sentence The boy hit the ball.

Other grammatical functions (or relations) involve notably articles, adjectives,
and adjuncts. We see this in the sentence

The big boy from Liverpool hit the ball with furor.

where the adjective big is related to the noun boy, and the adjuncts from Liverpool
and with furor are related respectively to boy and hit.

We can picture these relations as a dependency net, where each word is said
to modify exactly another word up to the main verb (Fig. 1.8). The main verb is
the head of the sentence and modifies no other word. Tesnière (1966) and Mel’cuk
(1988) have extensively described dependency theory.

The big boy from Liverpool hit the ball with furor

Fig. 1.8. Dependency relations in the sentence The big boy from Liverpool hit the ball with
furor.

Although they are less popular than phrase-structure grammars, dependency
grammars often prove more efficient to parse texts. They provide a theoretical
framework to many present parsing techniques and have numerous applications.

1.7 Semantics

The semantic level is more difficult to capture and there are numerous viewpoints
on how to define and to process it. A possible viewpoint is to oppose it to syntax:
there are sentences that are syntactically correct but that cannot make sense. Such
a description of semantics would encompass sentences that make sense. Classical
examples by Chomsky (1957) – sentences 1 and 2 – and Tesnière (1966) – sentence
3 – include:



12 1 An Overview of Language Processing

1. Colorless green ideas sleep furiously.
2. *Furiously sleep ideas green colorless.
3. Le silence vertébral indispose la voile licite.

‘The vertebral silence embarrasses the licit sail.’

Sentences 1 and 3 and are syntactically correct but have no meaning, while sentence
2 is neither syntactically nor semantically correct.

In computational linguistics, semantics is often related to logic and to predicate
calculus. Determining the semantic representation of a sentence then involves turning
it into a predicate-argument structure, where the predicate is the main verb and the
arguments correspond to phrases accompanying the verb such as the subject and the
object. This type of logical representation is called a logical form. Table 1.4 shows
examples of sentences together with their logical forms.

Table 1.4. Correspondence between sentences and logical forms.

Sentences Logical forms (predicates)
Pierre wrote notes wrote(pierre, notes).
Pierre a écrit des notes a_écrit(pierre, notes).
Pierre schrieb Notizen schrieb(pierre, notizen).

Representation is only one facet of semantics. Once sentence representations
have been built, they can be interpreted to check what they mean. Notes in the sen-
tence Pierre wrote notes can be linked to a dictionary definition. If we look up in the
Cambridge International Dictionary of English (Procter 1995), there are as many as
five possible senses for notes (abridged from p. 963):

1. note [WRITING], noun, a short piece of writing;
2. note [SOUND], noun, a single sound at a particular level;
3. note [MONEY], noun, a piece of paper money;
4. note [NOTICE], verb, to take notice of;
5. note [IMPORTANCE], noun, of note: of importance.

So linking a word meaning to a definition is not straightforward because of pos-
sible ambiguities. Among these definitions, the intended sense of notes is a special-
ization of the first entry:

notes, plural noun, notes are written information.

Finally, notes can be interpreted as what they refer to concretely, that is, a specific
object: a set of bound paper sheets with written text on them or a file on a computer
disk that keeps track of a set of magnetic blocks. Linking a word to an object of
the real world, here a file on a computer, is a part of semantics called reference
resolution.

The referent of the word notes, that is, the designated object, could be the
path /users/pierre/language_processing.html in Unix parlance. As
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for the definition of a word, the referent can be ambiguous. Let us suppose that a
database contains the locations of the lecture notes Pierre wrote. In Prolog, listing its
content could yield:

notes(’/users/pierre/operating_systems.html’).
notes(’/users/pierre/language_processing.html’).
notes(’/users/pierre/prolog_programming.html’).

Here this would mean that finding the referent of notes consists in choosing a docu-
ment among three possible ones (Fig. 1.9).

Pierre wrote notes wrote(pierre, notes)

Pierre

Louis

Charlotte operating 
systems

language 
processing

Prolog 
programming

1. Sentence 2. Logical representation

3. Real world refers to refers to

Fig. 1.9. Resolving references of Pierre wrote notes.

Obtaining the semantic structure of a sentence has been discussed abundantly in
the literature. This is not surprising, given the uncertain nature of semantics. Building
a logical form often calls on the composition of the semantic representation of the
phrases that constitute a sentence. To carry it out, we must assume that sentences and
phrases have an internal representation that can be expressed in terms of a logical
formula.

Once a representation has been built, a reasoning process is applied to resolve
references and to determine whether a sentence is true or not. It generally involves
rules of deduction, or inferences.

Pragmatics is semantics restricted to a specific context and relies on facts that
are external to the sentence. These facts contribute to the inference of a sentence’s
meaning or prove its truth or falsity. For instance, pragmatics of

Methuselah lived to be 969 years old. (Genesis 5:27)

can make sense in the Bible but not elsewhere, given the current possibilities of
medicine.
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1.8 Discourse and Dialogue

An interactive conversational agent cannot be envisioned without considering the
whole discourse of (human) users – or parts of it – and apart from a dialogue be-
tween a user and the agent. Discourse refers to a sequence of sentences, to a sentence
context in relation with other sentences or with some background situation. It is often
linked with pragmatics.

Discourse study also enables us to resolve references that are not self-explainable
in single sentences. Pronouns are good examples of such missing information. In the
sentence

John took it

the pronoun it can probably be related to an entity mentioned in a previous sentence,
or is obvious given the context where this sentence was said. These references are
given the name of anaphors.

Dialogue provides a means of communication. It is the result of two intermingled
– and, we hope, interacting – discourses: one from the user and the other from the
machine. It enables a conversation between the two entities, the assertion of new
results, and the cooperative search for solutions.

Dialogue is also a tool to repair communication failures or to complete interac-
tively missing data. It may clarify information and mitigate misunderstandings that
impair communication. Through a dialogue a computer can respond and ask the user:

I didn’t understood what you said! Can you repeat (rephrase)?

Dialogue easily replaces some hazardous guesses. When an agent has to find the
potential reference of a pronoun or to solve reference ambiguities, the best option is
simply to ask the user clarify what s/he means:

Tracy? Do you mean James’ brother or your mother?

Discourse processing splits texts and sentences into segments. It then sets links
between segments to chain them rationally and to map them onto a sort of structure
of the text. Discourse studies often make use of rhetoric as a background model of
this structure.

Dialogue processing classifies the segments into what are called speech acts.
At a first level, speech acts comprise dialogue turns: the user turn and the system
turn. Then turns are split into sentences, and sentences into questions, declarations,
requests, answers, etc. Speech acts can be modeled using finite-state automata or
more elaborate schemes using intention and planning theories.

1.9 Why Speech and Language Processing Are Difficult

For all the linguistic levels mentioned in the previous sections, we outlined models
and techniques to process speech and language. They often enable us to obtain excel-
lent results compared to the performance of human beings. However, for most levels,
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language processing rarely hits the ideal score of 100%. Among the hurdles that of-
ten prevent the machine from reaching this figure, two recur at any level: ambiguity
and the absence of a perfect model.

1.9.1 Ambiguity

Ambiguity is a major obstacle in language processing, and it may be the most sig-
nificant. Although as human beings we are not aware of it most of the time, am-
biguity is ubiquitous in language and plagues any stage of automated analysis. We
saw examples of ambiguous morphological analysis and part-of-speech annotation,
word senses, and references. Ambiguity also occurs in speech recognition, parsing,
anaphora solving, and dialogue.

McMahon and Smith (1996) illustrate strikingly ambiguity in speech recognition
with the sentence

The boys eat the sandwiches.

Speech recognition comprises generally two stages: first, a phoneme recognition,
and then a concatenation of phoneme substrings into words. Using the International
Phonetic Association (IPA) symbols, a perfect phonemic transcription of this utter-
ance would yield the transcription:

["D@b"oIz"i:t"D@s"ændwIdZIz],

which shows eight other alternative readings at the word decoding stage:

*The boy seat the sandwiches.
*The boy seat this and which is.
*The boys eat this and which is.
The buoys eat the sandwiches.
*The buoys eat this and which is.
The boys eat the sand which is.
*The buoys seat this and which is.

This includes the strange sentence

The buoys eat the sand which is.

For syntactic and semantic layers, a broad classification occurs between lexical
and structural ambiguity. Lexical ambiguity refers to multiple senses of words, while
structural ambiguity describes a parsing alternative, as with the frequently quoted
sentence

I saw the boy with a telescope,

which can mean either that I used a telescope to see the boy or that I saw the boy
who had a telescope.

A way to resolve ambiguity is to use a conjunction of language processing com-
ponents and techniques. In the example given by McMahon and Smith, five out of
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eight possible interpretations are not grammatical. These are flagged with an asterisk.
A further syntactic analysis could discard them.

Probabilistic models of word sequences can also address disambiguation. Statis-
tics on word occurrences drawn from large quantities of texts – corpora – can capture
grammatical as well as semantic patterns. Improbable alternatives <boys eat sand>
and <buoys eat sand> are also highly unlikely in corpora and will not be retained
(McMahon and Smith 1996). In the same vein, probabilistic parsing is a very power-
ful tool to rank alternative parse trees, that is, to retain the most probable and reject
the others.

In some applications, logical rules model the context, reflect common sense, and
discard impossible configurations. Knowing the physical context may help disam-
biguate some structures, as in the boy and the telescope, where both interpretations
of the isolated sentence are correct and reasonable. Finally, when a machine interacts
with a user, it can ask her/him to clarify an ambiguous utterance or situation.

1.9.2 Models and Their Implementation

Processing a linguistic phenomenon or layer starts with the choice or the develop-
ment of a formal model and its algorithmic implementation. In any scientific disci-
pline, good models are difficult to design. This is specifically the case with language.
Language is closely tied to human thought and understanding, and in some instances
models in computational linguistics also involve the study of the human mind. This
gives a measure of the complexity of the description and the representation of lan-
guage.

As noted in the introduction, linguists have produced many theories and models.
Unfortunately, few of them have been elaborate enough to encompass and describe
language effectively. Some models have also been misleading. This explains some-
what the failures of early attempts in language processing. In addition, many of the
potential theories require massive computing power. Processors and storage able to
support the implementation of complex models with substantial dictionaries, cor-
pora, and parsers were not widely available until recently.

However, in the last decade models have matured, and computing power has be-
come inexpensive. Although models and implementations are rarely (never?) perfect,
they now enable us to obtain exploitable results. Most use a limited set of techniques
that we will consider throughout this book, namely finite-state automata, logic gram-
mars, and first-order logic. These tools are easily implemented in Prolog. Another
set of tools pertains to the theory of probability and statistics. The combination of
logic and statistical techniques now enables us to parse running-text sentences with
a success rate of nearly 90%, a figure that would have been unimaginable ten years
ago.
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1.10 An Example of Language Technology in Action: the Persona
Project

1.10.1 Overview of Persona

The Persona prototype from Microsoft Research (Ball et al. 1997) illustrates a user
interface that is based on a variety of language processing techniques. Persona is a
conversational agent that helps a user select songs and music tracks from a record
database. Peedy, an animated cartoonlike parrot, embodies the agent that interacts
with the user. It contains speech recognition, parsing, and semantic analysis modules
to listen and to respond to the user and to play the songs. Table 1.5 shows an example
of a dialogue with Peedy.

Table 1.5. An excerpt of a Persona dialogue. After Ball et al. (1997).

Turns Utterances
[Peedy is asleep on his perch]

User: Good morning, Peedy.
[Peedy rouses]

Peedy: Good morning.
User: Let’s do a demo.

[Peedy stands up, smiles]
Peedy: Your wish is my command, what would you like to hear?
User: What have you got by Bonnie Raitt?

[Peedy waves in a stream of notes, and grabs one as they rush by.]
Peedy: I have “The Bonnie Raitt Collection” from 1990.
User: Pick something from that.
Peedy: How about “Angel from Montgomery”?
User: Sounds good.

[Peedy drops note on pile]
Peedy: OK.
User: Play some rock after that.

[Peedy scans the notes again, selects one]
Peedy: How about “Fools in Love”?
User: Who wrote that?

[Peedy cups one wing to his ‘ear’]
Peedy: Huh?
User: Who wrote that?

[Peedy looks up, scrunches his brow]
Peedy: Joe Jackson
User: Fine.

[Drops note on pile]
Peedy: OK.

Certain interactive talking assistants consider a limited set of the linguistic lev-
els we have presented before. Simple systems bypass syntax, for example, and have
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only a speech recognition device to detect a couple of key words. In contrast, Persona
has components to process more layers. They are organized in modules carrying out
speech recognition, speech synthesis, parsing, semantics analysis, and dialogue. In
addition, Persona has components specific to the application such as a name sub-
stitution module to find proper names like Madonna or Debussy and an animation
module to play the Peedy character.

Persona’s architecture organizes its modules into a pipeline processing flow
(Fig. 1.10). Many other instances of dialogue systems adopt a similar architecture.

Speech input
Whisper
Speech
recognition

Names
Proper noun
substitution

NLP
Language
analysis

Names
database

Action
templates
database

Semantic
Template matching
Object description

CDs
database

Player/Reactor
Animation engine

Video output
Animated parrot

Speech and
animation database

Dialogue
Context and
conversation state

Sound output Speech
controller

Dialogue rules
database

Jukebox
Application
CD changer

Fig. 1.10. Architecture of the Persona conversational assistant. After Ball et al. (1997).

1.10.2 The Persona’s Modules

Persona’s first component is the Whisper speech recognition module (Huang et al.
1995). Whisper uses signal processing techniques to compare phoneme models to the
acoustic waves, and it assembles the recognized phonemes into words. It also uses
a grammar to constrain the recognition possibilities. Whisper transcribes continuous
speech into a stream of words in real time. It is a speaker-independent system. This
means that it operates with any speaker without training.



1.11 Further Reading 19

The user’s orders to select music often contain names: artists, titles of songs,
or titles of albums. The Names module extracts them from the text before they are
passed on to further analysis. Names uses a pattern matcher that attempts to substi-
tute all the names and titles contained in the input sentence with placeholders. The
utterance Play before you accuse me by Clapton is transformed into Play track1
by artist1.

The NLP module parses the input in which names have been substituted. It uses
a grammar with rules similar to that of Sect. 1.6.1 and produces a tree structure.
It creates a logical form whose predicate is the verb and the arguments the subject
and the object: verb(subject, object). The sentence I would like to hear
something is transformed into the form like(i, hear(i, something)).

The logical forms are converted into a task graph representing the utterance
in terms of actions the agent can do and objects of the task domain. It uses an
application-dependent notation to map English words to symbols. It also reverses
the viewpoint from the user to the agent. The logical form of I would like to hear
something is transformed into the task graph:verbPlay(you, objectTrack)
– You play (verbPlay) a track (objectTrack).

Each possible request Peedy understands has possible variations – paraphrases.
The mapping of logical forms to task graphs uses transformation rules to reduce
them to a limited set of 17 canonical requests. The transformation rules deal with
synonyms, syntactic variation, and colloquialisms. The forms corresponding to

I’d like to hear some Madonna.
I want to hear some Madonna.
It would be nice to hear some Madonna.

are transformed into a form equivalent to

Let me hear some Madonna.

The resulting graph is matched against actions templates the jukebox can carry out.
The dialogue module controls Peedy’s answers and reactions. It consists of a

state machine that models a sequence of interactions. Depending on the state of the
conversation and an input event – what the user says – Peedy will react: trigger an
animation, utter a spoken sentence or play music, and move to another conversational
state.

1.11 Further Reading

Introductory textbooks to linguistics include An Introduction to Language (Fromkin
et al. 2003) and Linguistics: An Introduction to Linguistics Theory (Fromkin 2000).
Linguistics: The Cambridge Survey (Newmeyer et al. 1988) is an older reference
in four volumes. The Nouveau dictionnaire encyclopédique des sciences du langage
(Ducrot and Schaeffer 1995) is an encyclopedic presentation of linguistics in French,
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and Studienbuch Linguistik (Linke et al. 2004) is an introduction in German. Fun-
damenti di linguistica (Simone 1998) is an outstandingly clear and concise work in
Italian that describes most fundamental concepts of linguistics.

Concepts and theories in linguistics evolved continuously from their origins to
the present time. Historical perspectives are useful to understand the development
of central issues. A Short History of Linguistics (Robins 1997) is a very readable
introduction to linguistics history. Histoire de la linguistique de Sumer à Saussure
(Malmberg 1991) and Analyse du langage au XXe siècle (Malmberg 1983) are com-
prehensive and accessible books that review linguistic theories from the ancient Near
East to the end of the 20th century. Landmarks in Linguistic Thought, The Western
Tradition from Socrates to Saussure (Harris and Taylor 1997) are extracts of found-
ing classical texts followed by a commentary.

The journal of best repute in the domain of computational linguistics is Com-
putational Linguistics, published by the Association for Computational Linguistics
(ACL). Some interesting articles can also be found in the ACL conference proceed-
ings and in more general journals such as IEEE Transactions on Pattern Analysis
and Machine Intelligence, other IEEE journals, Artificial Intelligence, and the As-
sociation for Computing Machinery (ACM) journals. The French journal Traitement
automatique des langues is also a source of interesting papers. It is published by the
Association de traitement automatique des langues (http://www.atala.org).

Available books on natural language processing include (in English): Natural
Language Processing in Prolog (Gazdar and Mellish 1989), Prolog for Natural Lan-
guage Analysis (Gal et al. 1991), Natural Language Processing for Prolog Pro-
grammers (Covington 1994), Natural Language Understanding (Allen 1994), Foun-
dations of Statistical Natural Language Processing (Manning and Schütze 1999),
Speech and Language Processing: An Introduction to Natural Language Process-
ing, Computational Linguistics, and Speech Recognition (Jurafsky and Martin 2000),
Foundations of Computational Linguistics: Human-Computer Communication in
Natural Language (Hausser 2001). Avalaible books in French include: Prolog pour
l’analyse du langage naturel (Gal et al. 1989), L’intelligence artificielle et le lan-
gage (Sabah 1990), and in German Grundlagen der Computerlinguistik. Mensch-
Maschine-Kommunikation in natürlicher Sprache (Hausser 2000).

There are plenty of interesting resources on the Internet. Web sites include dig-
ital libraries, general references, corpus and lexical resources, together with soft-
ware registries. A starting point is the official home page of the ACL, which
provides many links (http://www.aclweb.org). An extremely valuable anthology
of papers published under the auspices of the ACL is available from this site
(http://www.aclweb.org/anthology). Wikipedia (http://www.wikipedia.org) is a free
encyclopedia that contains definitions and general articles on concepts and theories
used in computational linguistics and natural language processing.

Many source programs are available on the Internet, either free or under a license.
They include speech synthesis and recognition, morphological analysis, parsing, and
so on. The German Institute for Artificial Intelligence Research maintains a list of
them at the Natural Language Software Registry (http://registry.dfki.de).
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Lexical and corpus resources are now available in many languages. Valuable sites
include the Oxford Text Archive (http://ota.ox.ac.uk/), the Linguistic Data Consor-
tium of the University of Pennsylvania (http://www.ldc.upenn.edu/), and the Euro-
pean Language Resources Association (http://www.elra.info).

There are nice interactive online demonstrations covering speech synthesis, pars-
ing, translation and so on. Since sites are sometimes transient, we don’t list them
here. A good way to find them is to use directories like Yahoo, or search engines like
Google.

Finally, some companies and laboratories have a very active research in language
processing. They include major software powerhouses like Microsoft, IBM, and Xe-
rox. The paper describing the Peedy animated character can be found at the Microsoft
Research Web site (http://www.research.microsoft.com).

Exercises

1.1. List some computer applications that are relevant to the domain of language
processing.

1.2. Tag the following sentences using parts of speech you know:
The cat caught the mouse.
Le chat attrape la souris.
Die Katze fängt die Maus.

1.3. Give the morpheme list of: sings, sung, chante, chantiez, singt, sang. List all the
possible ambiguities.

1.4. Give the morpheme list of: unpleasant, déplaisant, unangenehm.

1.5. Draw the tree structure of the sentences:
The cat caught the mouse.
Le chat attrape la souris.
Die Katze fängt die Maus.

1.6. Identify the main functions of these sentences and draw the corresponding de-
pendency net linking the words:
The cat caught the mouse.
Le chat attrape la souris.
Die Katze fängt die Maus.

1.7. Draw the dependency net of the sentences:
The mean cat caught the gray mouse on the table.
Le chat méchant a attrapé la souris grise sur la table.
Die böse Katze hat die graue Maus auf dem Tisch gefangen.

1.8. Give examples of sentences that are:
• Syntactically incorrect
• Syntactically correct
• Syntactically and semantically correct
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1.9. Give the logical form of these sentences:
The cat catches the mouse.
Le chat attrape la souris.
Die Katze fängt die Maus.

1.10. Find possible phonetic interpretations of the French phrase quant-à-soi.

1.11. List the components you think necessary to build a spoken dialogue system.
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Corpus Processing Tools

2.1 Corpora

A corpus, plural corpora, is a collection of texts or speech stored in an electronic
machine-readable format. A few years ago, large electronic corpora of more than
a million of words were rare, expensive, or simply not available. At present, huge
quantities of texts are accessible in many languages of the world. They can easily be
collected from a variety of sources, most notably the Web, where corpora of hundreds
of millions of words are within the reach of most computational linguists.

2.1.1 Types of Corpora

Some corpora focus on specific genres, law, science, novels, news broadcasts, tran-
scriptions of telephone calls, or conversations. Others try to gather a wider variety of
running texts. Texts collected from a unique source, say from scientific magazines,
will probably be slanted toward some specific words that do not appear in everyday
life. Table 2.1 compares the most frequent words in the book of Genesis and in a col-
lection of contemporary running texts. It gives an example of such a discrepancy. The
choice of documents to include in a corpus must then be varied to survey compre-
hensively and accurately a language usage. This process is referred to as balancing a
corpus.

Balancing a corpus is a difficult and costly task. It requires collecting data from a
wide range of sources: fiction, newspapers, technical, and popular literature. Bal-
anced corpora extend to spoken data. The Linguistic Data Consortium from the
University of Pennsylvania and The European Language Resources Association
(ELRA), among other organizations, distribute written and spoken corpus collec-
tions. They feature samples of magazines, laws, parallel texts in English, French,
German, Spanish, Chinese, telephone calls, radio broadcasts, etc.

In addition to raw texts, some corpora are annotated. Each of their words is la-
beled with a linguistic tag such as a part of speech or a semantic category. The an-
notation is done either manually or semiautomatically. Spoken corpora contain the
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Table 2.1. List of the most frequent words in present texts and in the book of Genesis. After
Crystal (1997).

English French German
Most frequent words in a collection the de der
of contemporary running texts of le (article) die

to la (article) und
in et in
and les des

Most frequent words in Genesis and et und
the de die
of la der
his à da
he il er

transcription of spoken conversations. This transcription may be aligned with the
speech signal and sometimes includes prosodic annotation: pause, stress, etc. Anno-
tation tags, paragraph and sentence boundaries, parts of speech, syntactic or semantic
categories follow a variety of standards, which are called markup languages.

Among annotated corpora, treebanks deserve a specific mention. They are col-
lections of parse trees or more generally syntactic structures of sentences. The pro-
duction of a treebank generally requires a team of linguists to parenthesize the con-
stituents of a corpus or to arrange them in a structure. Annotated corpora require a
fair amount of handwork and are therefore more expensive than raw texts. Treebanks
involve even more clerical work and are relatively rare. The Penn Treebank (Mar-
cus et al. 1993) from the University of Pennsylvania is a widely cited example for
English.

A last word on annotated corpora: in tests, we will benchmark automatic methods
against manual annotation, which is often called the Gold Standard. We will assume
the hand annotation perfect, although this is not true in practice. Some errors slip into
hand-annotated corpora, even in those of the best quality, and the annotators may not
agree between them. The scope of agreement varies depending on the annotation
task. The inter-annotator agreement is high for parts of speech. It is lower when
annotating the sense of a word.

2.1.2 Corpora and Lexicon Building

Lexicons and dictionaries are intended to give word lists, to provide a reader with
word senses and meanings, and to outline their usage. Dictionaries’ main purpose
is related to lexical semantics. Lexicography is the science of building lexicons and
writing dictionaries. It uses electronic corpora extensively.

The basic data of a dictionary is a word list. Such lists can be drawn manually
or automatically from corpora. Then, lexicographers write the word definitions and
choose citations illustrating the words. Since most of the time current meanings are
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obvious to the reader, meticulous lexicographers tended to collect examples – cita-
tions – reflecting a rare usage. Computerized corpora can help lexicographers avoid
this pitfall by extracting all the citations that exemplify a word. An experienced lexi-
cographer will then select the most representative examples that reflect the language
with more relevance. S/he will prefer and describe more frequent usage and possibly
set aside others.

Finding a citation involves sampling a fragment of text surrounding a given word.
In addition, the context of a word can be more precisely measured by finding recur-
rent pairs of words, or most frequent neighbors. The first process results in concor-
dance tables, and the second one in collocations.

Concordance tables were first produced for antiquity and religious studies.
Hugues de Saint Cher is known to have compiled the first Bible concordance in the
thirteenth century. Concordances consist of text excerpts centered on a specific word
and surrounded by a limited number of words before and after it (Table 2.2). Other
more elaborate concordances take word morphology into account or group words
together into semantic themes. Sœur Jeanne d’Arc (1970) produced an example of
such a concordance for Bible studies.

Table 2.2. Concordance of miracle in the Gospel of John.

Language Concordances
English s beginning of miracles did Je

n they saw the miracles which
n can do these miracles that t
ain the second miracle that Je
e they saw his miracles which

French le premier des miracles que fi
i dirent: Quel miracle nous mo
om, voyant les miracles qu’il
peut faire ces miracles que tu
s ne voyez des miracles et des

German ist das erste Zeichen, das Je
du uns für ein Zeichen, daß du
en, da sie die Zeichen sahen,
emand kann die Zeichen tun, di
Wenn ihr nicht Zeichen und Wun

Concordancing is a powerful tool to study usage patterns and to write definitions.
It also provides evidences on certain preferences between verbs and prepositions, ad-
jectives and nouns, recurring expressions, or common syntactic forms. These couples
are referred to as collocations. Church and Mercer (1993) cite a striking example of
idiosyncratic collocations of strong and powerful. While strong and powerful have
similar definitions, they occur in different contexts, as shown in Table 2.3.

Table 2.4 shows additional collocations of strong and powerful. These word pref-
erences cannot be explained using rational definitions, but can be observed in cor-
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Table 2.3. Comparing strong and powerful.

English French German
You say Strong tea Thé fort Kräftiger Tee

Powerful computer Ordinateur puissant Starker Computer
You don’t say Strong computer Thé puissant Starker Tee

Powerful tea Ordinateur fort Kräftiger Computer

pora. A variety of statistical tests can measure the strength of pairs, and we can
extract them automatically from a corpus.

Table 2.4. Word preferences of strong and powerful collected from the Associated Press cor-
pus. Numbers in columns indicate the number of collocation occurrences with word w. After
Church and Mercer (1993).

Preference for strong over powerful Preference for powerful over strong
strong w powerful w w strong w powerful w w

161 0 showing 1 32 than
175 2 support 1 32 figure
106 0 defense 3 31 minority
...

2.1.3 Corpora as Knowledge Sources for the Linguist

In the beginning of the 1990s, computer-based corpus analysis completely renewed
empirical methods in linguistics. It helped design and implement many of the tech-
niques presented in this book. As we saw with dictionaries, corpus analysis helps
lexicographers acquire lexical knowledge and describe language usage. More gener-
ally, corpora enable us to experiment with tools and to confront theories on real data.
For most language analysis programs, collecting relevant corpora of texts has then
become a necessary step to define specifications and measure performances. Let us
take the examples of part-of-speech taggers, parsers, and dialogue systems.

Annotated corpora are essential tools to develop part-of-speech taggers or parsers.
A first purpose is to measure the tagging or parsing performance. The tagger or parser
is run on texts and their result is compared to hand annotation, which serves as a ref-
erence. A linguist or an engineer can then determine the accuracy, the robustness of
an algorithm or a parsing model and see how well it scales up by applying it to a
variety of texts.

A second purpose of annotated corpora is to be a knowledge source to refine tag-
ging techniques and improve grammars. While developing a grammar, a linguist can
see if changing a rule improves or deteriorates results. The tool tuning is then done
manually. Using statistical techniques, annotated corpora also enable researchers to
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acquire grammar rules or language models automatically or semiautomatically to tag
or parse a text. We will see this in Chap. 7.

A dialogue corpus between a user and a machine is also critical to develop an
interactive spoken system. The corpus is usually collected through fake dialogues
between a real user and a person simulating the machine answers. Repeating such
experiments with a reasonable number of users enables us to acquire a text set cov-
ering what the machine can expect from potential users. It is then easier to determine
the vocabulary of an application, to have a precise idea of word frequencies, and
to know the average length of sentences. In addition, the dialogue corpus enables
the analyst to understand what the user expects from the machine, that is, how s/he
interacts with it.

2.2 Finite-State Automata

2.2.1 A Description

The most frequent operation we do with corpora consists in searching words or
phrases. To be convenient, search must extend beyond fixed strings. We may want
to search a word or its plural form, uppercase or lowercase letters, expressions con-
taining numbers, etc. This is made possible using finite-state automata (FSA) that we
introduce now. FSA are flexible tools to process texts and one of the most adequate
to search strings.

FSA theory was designed in the beginning of computer science as a model of
abstract computing machines. It forms a well-defined formalism that has been tested
and used by generations of programmers. FSA stem from a simple idea. These are
devices that accept – recognize – or reject an input stream of characters. FSA are very
efficient in terms of speed and memory occupation and are easy to implement in Pro-
log. In addition to text searching, they have many other applications: morphological
parsing, part-of-speech annotation, and speech processing.

Figure 2.1 shows a three-state automaton numbered from 0 to 2, where state
q0 is called the start state and q2 the final state. An automaton has a single start
state and any number of final states, indicated by double circles. Arcs between states
designate the possible transitions. Each arc is annotated by a label, which means that
the transition accepts or generates the corresponding character.

An automaton accepts an input string in the following way: it starts in the ini-
tial state, follows a transition where the arc character matches the first character of
the string, consumes the corresponding string character, and reaches the destination
state. It makes then a second transition with the second string character and contin-
ues in this way until it ends up in one of the final states and there is no character left.
The automaton in Fig. 2.1 accepts or generates strings such as: ac, abc, abbc, abbbc,
abbbbbbbbbbbbc, etc. If the automaton fails to reach a final state, either because it has
no more characters in the input string or because it is trapped in a nonfinal state, it
rejects the string.
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q0 q1 q2

a c

b

Fig. 2.1. A finite-state automaton.

As an example, let us see how the automaton accepts string abbc and rejects
abbcb. The input abbc is presented to the start state q0. The first character of the string
matches that of the outgoing arc. The automaton consumes character a and moves to
state q1. The remaining string is bbc. Then, the automaton loops twice on state q1 and
consumes bb. The resulting string is character c. Finally, the automaton consumes c
and reaches state q2, which is the final state. On the contrary, the automaton does
not accept string abbcb. It moves to states q0, q1, and q2, and consumes abbc. The
remaining string is letter b. Since there is no outgoing arc with a matching symbol,
the automaton is stuck in state q2 and rejects the string.

Automata may contain ε-transitions from one state to another. In this case, the
automaton makes a transition without consuming any character of the input string.
The automaton in Fig. 2.2 accepts strings a, ab, abb, etc. as well as ac, abc, abbc, etc.

q0 q1 q2

a c

ε

b

Fig. 2.2. A finite-state automaton with an ε-transition.

2.2.2 Mathematical Definition of Finite-State Automata

FSA have a formal definition. An FSA consists of five components (Q, Σ, q0, F, δ),
where:

1. Q is a finite set of states.
2. Σ is a finite set of symbols or characters: the input alphabet.
3. q0 is the start state, q0 ∈ Q.
4. F is the set of final states, F ⊆ Q.
5. δ is the transition function Q × Σ → Q, where δ(q, i) returns the state where

the automaton moves when it is in state q and consumes the input symbol i.
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The quintuple defining the automaton in Fig. 2.1 is Q = {q0, q1, q2}, Σ =
{a, b, c}, F = {q2}, and δ = {δ(q0, a) = q1, δ(q1, b) = q1, δ(q1, c) = q2}. The
state-transition table in Table 2.5 is an alternate representation of the δ function.

Table 2.5. A state-transition table where ∅ denotes nonexisting or impossible transitions.

State\Input a b c

q0 q1 ∅ ∅
q1 ∅ q1 q2

q2 ∅ ∅ ∅

2.2.3 Finite-State Automata in Prolog

A finite-state automaton has a straightforward implementation in Prolog. It is merely
the transcription of the quintuplet definition. The following code describes the tran-
sitions, the start, and the final states of the automaton in Fig. 2.1:

% The start state
start(q0).

% The final states
final(q2).

% The transitions
% transition(SourceState, Symbol, DestinationState)
transition(q0, a, q1).
transition(q1, b, q1).
transition(q1, c, q2).

The predicate accept/1 selects the start state and runs the automaton using
accept/2. The predicate accept/2 is recursive. It succeeds when it reaches a
final state, or consumes a symbol of the input string and makes a transition otherwise.

accept(Symbols) :-
start(StartState),
accept(Symbols, StartState).

% accept(+Symbols, +State)
accept([], State) :-
final(State).

accept([Symbol | Symbols], State) :-
transition(State, Symbol, NextState),
accept(Symbols, NextState).
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accept/1 either accepts an input symbol string or fails:

?- accept([a, b, b, c]).
Yes

?- accept([a, b, b, c, b]).
No

The automaton in Fig. 2.2 contains ε-transitions. They are introduced in the
database as facts:

epsilon(q1, q2).

To take them into account, the accept/2 predicate should be modified so that there
are two possible sorts of transitions. A first rule consumes a character and a second
one, corresponding to an ε-transition, passes the string unchanged to the next state:

accept([], State) :-
final(State).

accept([Symbol | Symbols], State) :-
transition(State, Symbol, NextState),
accept(Symbols, NextState).

accept(Symbols, State) :-
epsilon(State, NextState),
accept(Symbols, NextState).

2.2.4 Deterministic and Nondeterministic Automata

The automaton in Fig. 2.1 is said to be deterministic (DFSA) because given a state
and an input, there is one single possible destination state. On the contrary, a non-
deterministic automaton (NFSA) has states where it has a choice: the path is not
determined in advance.

Figure 2.3 shows an example of an NFSA that accepts the strings ab, abb, abbb,
abbbb, etc. Taking abb as input, the automaton reaches the state q1 consuming the
letter a. Then, it has a choice between two states. The automaton can either move
to state q2 or stay in state q1. If it first moves to state q2, there will be one character
left and the automaton will fail. The right path is to loop onto q1 and then to move to
q2. ε-transitions also cause automata to be nondeterministic as in Fig. 2.2 where any
string that has reached state q1 can also reach state q2.

A possible strategy to deal with nondeterminism is to use backtracking. When
an automaton has the choice between two or more states, it selects one of them and
remembers the state where it made the decision: the choice point. If it subsequently
fails, the automaton backtracks to the choice point and selects another state to go to.
In our example in Fig. 2.3, if the automaton moves first to state q2 with the string
bb, it will end up in a state without outgoing transition. It will have to backtrack and
select state q1. Backtracking is precisely the strategy that Prolog uses automatically.
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q0 q1 q2

a b

b

Fig. 2.3. A nondeterministic automaton.

2.2.5 Building a Deterministic Automata from a Nondeterministic One

Although surprising, any nondeterministic automaton can be converted into an equiv-
alent deterministic automaton. We outline here an informal description of the deter-
minization algorithm. See Hopcroft et al. (2001) for a complete description of this
algorithm.

The algorithm starts from an NFSA (QN , Σ, q0, FN , δN ) and builds an equiva-
lent DFSA (QD, Σ, {q0}, FD, δD), where:

• QD is the set of all the possible state subsets of QN . It is called the power set. The
set of states of the automaton in Fig. 2.3 is QN = {q0, q1, q2}. The corresponding
set of sets is QD = {∅, {q0}, {q1}, {q2}, {q0, q1}, {q0, q2}, {q1, q2}, {q0, q1, q2}}.
If QN has n states, QD will have 2n states. In general, many of these states will
be inaccessible and will be discarded.

• FD is the set of sets that include at least one final state of FN . In our example,
QD = {{q2}, {q0, q2}, {q1, q2}, {q0, q1, q2}}.

• For each set S ⊂ QN and for each input symbol a, δD(S, a) =
δN (s,a)⋃

s∈S

. The

state-transition table in Table 2.6 represents the automaton in Fig. 2.3. Table 2.7
represents the determinized version of it.

Table 2.6. The state-transition table of the nondeterministic automaton shown in Fig. 2.3.

State\Input a b

q0 q1 ∅
q1 ∅ q1, q2

q2 ∅ ∅

2.2.6 Searching a String with a Finite-State Automaton

Searching the occurrences of a string in a text corresponds to recognizing them with
an automaton, where the string characters label the sequence of transitions. However,
the automaton must skip chunks in the beginning, between the occurrences, and at
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Table 2.7. The state-transition table of the determinized automaton in Fig. 2.3.

State\Input a b

∅ ∅ ∅
{q0} {q1} ∅
{q1} ∅ {q1, q2}
{q2} ∅ ∅
{q0, q1} {q1} {q1, q2}
{q0, q2} {q1} ∅
{q1, q2} ∅ {q1, q2}
{q0, q1, q2} {q1} {q1, q2}

the end of the text. The automaton consists then of a core accepting the searched
string and of loops to process the remaining pieces. Consider again the automaton in
Fig. 2.1 and modify it to search strings ac, abc, abbc, abbbc, etc., in a text. We add
two loops: one in the beginning and the other to come back and start the search again
(Fig. 2.4).

q0 q1 q2

a c

ε

Σ b

Fig. 2.4. Searching strings ac, abc, abbc, abbbc, etc.

In doing this, we have built an NFSA that it is preferable to convert into a DFSA.
Hopcroft et al. (2001) describe the mathematical properties of such automata and an
algorithm to automatically build an automaton for a given set of patterns to search.
They notably report that resulting DFSA have exactly the same number of states as
the corresponding NFSA. We present an informal solution to determine the transi-
tions of the automaton in Fig. 2.4.

If the input text does not begin with an a, the automaton must consume the be-
ginning characters and loop on the start state until it finds one. Figure 2.5 expresses
this with an outgoing transition from state 0 to state 1 labeled with an a and a loop
for the rest of the characters. Σ − a denotes the finite set of symbols except a. From
state 1, the automaton proceeds if the text continues with either a b or a c. If it is
an a, the preceding a is not the beginning of the string, but there is still a chance
because it can start again. It corresponds to the second loop on state 1. Otherwise, if
the next character falls in the set Σ − {a, b, c}, the automaton goes back to state 0.
The automaton successfully recognizes the string if it reaches state 2. Then it goes
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back to state 0 and starts the search again, except if the next character is an a, for
which it can go directly to state 1.

q0 q1 q2

a c

a

Σ − a

Σ − {a, b, c}

Σ − a b

a

Fig. 2.5. An automaton to search strings ac, abc, abbc, abbbc, etc., in a text.

2.2.7 Operations on Finite-State Automata

FSA can be combined using a set of operations. The most useful are the union, the
concatenation, and the closure.

The union or sum of two automata A and B accepts or generates all the strings
of A and all the strings of B. It is denoted A ∪ B. We obtain it by adding a new
initial state that we link to the initial states of A and B (Fig. 2.6) using ε-transitions
(Fig. 2.7).

q0 q1

q2

q3

a c

b

b

q0 q1 q2

a c

b

Fig. 2.6. Automata A (left) and B (right).

The concatenation or product of A and B accepts all the strings that are concate-
nations of two strings, the first one being accepted by A and the second one by B. It
is denoted A.B. We obtain the resulting automaton by connecting all the final states
of A to the initial state of B using ε-transitions (Fig. 2.8).

The iteration or Kleene closure of an automaton A accepts the concatenations
of any number of its strings and the empty string. It is denoted A∗, where A∗ =
{ε} ∪ A ∪ A.A ∪ A.A.A ∪ A.A.A.A ∪ . . .. We obtain the resulting automaton by
linking the final states of A to its initial state using ε-transitions and adding a new
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q′0

q0 q1

q2

q3

a c

b

b

q0 q1 q2

a c

b
ε

ε

Fig. 2.7. The union of two automata: A ∪ B.

q0 q1

q2

q3

a c

b

b

q0 q1 q2

a c

b

ε

ε

Fig. 2.8. The concatenation of two automata: A.B.

initial state, as shown in Fig. 2.9. The new initial state enables us to obtain the empty
string.

q′0 q0 q1

q2

q3

ε

a c

b

ε

ε

b

Fig. 2.9. The closure of A.

The notation Σ∗ designates the infinite set of all possible strings generated from
the alphabet Σ. Other significant operations are:
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• The intersection of two automata A∩B that accepts all the strings accepted both
by A and by B. If A = (Σ, Q1, q1, F1, δ1) and B = (Σ, Q2, q2, F2, δ2), the
resulting automaton is obtained from the Cartesian product of states (Σ, Q1 ×
Q2, 〈q1, q2〉 , F1×F2, δ3) with the transition function δ3(〈s1, s2〉 , i) = {〈t1, t2〉 |
t1 ∈ δ1(s1, i) ∧ t2 ∈ δ2(s2, i)}.

• The difference of two automata A − B that accepts all the strings accepted by A
but not by B.

• The complementation of the automaton A in Σ∗ that accepts all the strings that
are not accepted by A. It is denoted Ā, where Ā = Σ∗ − A.

• The reversal of the automaton A that accepts all the reversed strings accepted by
A.

Two automata are said to be equivalent when they accept or generate exactly the
same set of strings. Useful equivalence transformations optimize computation speed
or memory requirements. They include:

• ε-removal, which transforms an initial automaton into an equivalent one without
ε-transitions

• determinization, which transforms a nondeterministic automaton into a determin-
istic one

• minimization, which determines among equivalent automata the one that has the
smallest number of states

Optimization algorithms are out of the scope of this book. Hopcroft et al. (2001) as
well as Roche and Schabes (1997) describe them in detail.

2.3 Regular Expressions

The automaton in Fig. 2.1 generates or accepts strings composed of one a, zero or
more b’s, and one c. We can represent this set of strings using a compact notation:
ab*c, where the star symbol means any number of the preceding character. Such a
notation is called a regular expression or regex. Regular expressions are very power-
ful devices to describe patterns to search in a text. Although their notation is different,
regular expressions can always be implemented under the form of automata, and vice
versa. However, regular expressions are generally easier to use.

Regular expressions are composed of literal characters, that is, ordinary text char-
acters like abc, and of metacharacters like * that have a special meaning. The sim-
plest form of regular expressions is a sequence of literal characters: letters, numbers,
spaces, or punctuation signs. Regexes regular or Prolog match strings regular
or Prolog contained in a text. Table 2.8 shows examples of pattern matching with
literal characters. Regular expressions are case-sensitive and match the first instance
of the string or all its instances in a text, depending on the regex language that is
used.

There are currently a dozen major regular expression languages freely available.
Their common ancestor is grep, which stands for global/regular expression/print.
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Table 2.8. Examples of simple patterns and matching results.

Pattern String
regular “A section on regular expressions”
Prolog “The Prolog language”
the “The book of the life”

grep is a standard Unix tool that prints out all the lines of a file that contain a
given pattern. The grep user interface conforms to the Unix command-line style.
It consists of the command name, here grep, options, and the arguments. The first
argument is the regular expression delimited by single straight quotes. The next ar-
guments are the files where to search the pattern:

grep ’regular expression’ file1 file2 ... filen

The Unix command:

grep ’abc’ myFile

prints all the lines of file myFile containing the string abc and

grep ’ab*c’ myFile1 myFile2

prints all the lines of file myFile1 and myFile2 containing the strings ac, abc,
abbc, abbbc, etc.

grep had a considerable influence on its followers. Most of them adhere to a
comparable syntax. Among the most popular languages featuring regexes now are
Perl and Python, Java, and C#. In the following sections, the description of the syn-
tactic features refers to egrep, which is a modern version of grep available for
most operating systems.

2.3.1 Repetition Metacharacters

We saw that the metacharacter * expressed a repetition of zero or more characters,
as in ab*c. Other characters that describe repetitions are the question mark, ?, the
plus, +, and the dot, . (Table 2.9). The star symbol is also called the closure operator
or the Kleene star.

If the pattern to search contains a character that is also a metacharacter, for in-
stance, “?”, we need to indicate it to the regex engine using a backslash \ before it.
We saw that abc? matches ab and abc. The expression abc\? matches the string
abc?. In the same vein, abc\. matches the string abc., and a\*bc matches a*bc.
The backslash is also called the escape character. It transforms a metacharacter into
a literal symbol. In most regex languages, we must quote characters ., ?, (, ), [, ],
{, }, *, +, |, ˆ, $, and \ to search them literally.
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Table 2.9. Repetition metacharacters.

Metachars Descriptions Examples
* Matches any number of occurrences

of the previous character – zero or
more

ac*e matches strings ae, ace,
acce, accce, etc. as in “The aerial
acceleration alerted the ace pilot”

? Matches at most one occurrence of
the previous characters – zero or one

ac?e matches ae and ace as in
“The aerial acceleration alerted the
ace pilot”

+ Matches one or more occurrences of
the previous characters

ac+e matches ace, acce,
accce, etc. as in as in “The
aerial acceleration alerted the ace
pilot”

{n} Matches exactly n occurrences of the
previous characters

ac{2}e matches acce as in “The
aerial acceleration alerted the ace pi-
lot”

{n,} Matches n or more occurrences of the
previous characters

ac{2,}e matches acce, accce,
etc.

{n,m} Matches from n to m occurrences of
the previous characters

ac{2,4}e matches acce, accce,
and acccce.

. Matches one occurrence of any char-
acters of the alphabet except the new
line character

a.e matches aae, aAe, abe, aBe,
a1e, etc. as in “The aerial accelera-
tion alerted the ace pilot”

.* Matches any string of characters and
until it encounters a new line charac-
ter

2.3.2 The Longest Match

The description of repetition metacharacters in Table 2.9 sometimes makes string
matching ambiguous, as with the string aabbc and the regex a+b*, which has six
possible matches: a, aa, ab, aab, abb, and aabb. In fact, matching algorithms use two
rules that are common to all the regex languages:

1. They match as early as they can in a string.
2. They match as many characters as they can.

Hence, a+b* matches aabb, which is the longest possible match. The matching
strategy of repetition metacharacters is said to be greedy.

In some cases, the greedy strategy is not appropriate. To display the sentence

They match as early and as many characters as they can.

in a Web page with two phrases set in bold, we need specific tags that we will insert
in the source file. Using HTML, the language of the Web, the sentence will probably
be annotated as
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They match <b>as early</b> and <b>as many</b>
characters as they can.

where <b> and </b> mark respectively the beginning and the end of a phrase set in
bold. (We will see annotation frameworks in more detail in Chap. 3.)

A regular expression to search and extract phrases in bold could be:

<b>.*</b>

Unfortunately, applying this regex to the sentence will match one single string:

<b>as early</b> and <b>as many</b>

which is not what we wanted. In fact, this is not a surprise. As we saw, the regex
engine matches as early as it can, i.e., from the first <b> and as many characters as
it can up to the second </b>.

A possible solution is to modify the behavior of repetition metacharacters and
make them “lazy.” They will then consume as few characters as possible. We create
the lazy variant of a repetition metacharacter by appending a question mark to it
(Table 2.10). The regex

<b>.*?</b>

will then match the two intended strings,

<b>as early</b> and <b>as many</b>.

Table 2.10. Lazy metacharacters.

Metachars Descriptions

*? Matches any number of occurrences of the previous character – zero or more
?? Matches at most one occurrence of the previous characters – zero or one
+? Matches one or more occurrences of the previous characters
{n}? Matches exactly n occurrences of the previous characters
{n,}? Matches n or more occurrences of the previous characters
{n,m}? Matches from n to m occurrences of the previous characters

2.3.3 Character Classes

We saw that the dot, ., represents any character of the alphabet. It is possible to de-
fine smaller subsets or classes. A list of characters between square brackets [...]
matches any character contained in the list. [abc]means one occurrence of eithera,
b, or c. [ABCDEFGHIJKLMNOPQRSTUVWXYZ]means one uppercase unaccented
letter, and [0123456789] means one digit. We can concatenate character classes,
literal characters, and metacharacters, as in the expressions [0123456789]+ and
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[0123456789]+\.[0123456789]+, that match respectively integers and dec-
imal numbers.

Character classes are useful to search patterns with spelling differences, such as
[Cc]omputer [Ss]cience, which matches four different strings:

Computer Science
Computer science
computer Science
computer science

We can define the complement of a character class, that is, the characters
of the alphabet that are not member of the class, using the caret symbol, ˆ, as
the first symbol inside the angle brackets. [ˆa] means any character that is not
an a. [ˆ0123456789] means any character that is not a digit. The expression
[ˆABCD]* means any string that does not contain A, B, C, or D. The caret must be
the first character after the brackets. The expression [aˆb] matches either a, ˆ, or b.

Inside angle brackets, we can also specify ranges using the dash character -. The
expression [1-4] means any of the digits 1, 2, 3, or 4, and a[1-4]b matches a1b,
a2b, a3c, or a4b. The expression [a-zàâäæçéèêëîïôöœßùûüÿ] matches any
lowercase accented or unaccented letter of French and German. If we want to search
the dash character itself, we need to quote it as \-. The expression [1\-4] means
any of the characters 1, -, or 4.

Most regex languages have also predefined classes. Table 2.11 lists some useful
ones. Some classes may be specific to one regex language. In case of doubt, refer to
the corresponding manual.

2.3.4 Nonprintable Symbols or Positions

Some metacharacters match positions and nonprintable symbols. Positions or an-
chors enable one to search a pattern with a specific location in a text. They encode
the start and end of a line, using respectively the caret, ˆ, and the dollar, $.

The expressionˆChaptermatches lines beginning with Chapter and[0-9]+$
matches lines ending with a number. We can combine both in ˆChapter [0-9]+$
that matches lines consisting only of the Chapter word and a number as Chapter 3,
for example.

The command line

egrep ’^[aeiou]+$’ myFile

matches lines of myFile containing only vowels.
Similarly, metacharacters \< and \> match the start and end of a word. The

expression \<ace matches aces and acetylene but not place. Conversely, ace\>
matches place but neither aces nor acetylene. The expression \<act\> matches
exactly the word act and not react or acted. Table 2.12 summarizes anchors and
some nonprintable characters.

In Perl, word boundaries are indicated by \b instead of \< and \>, as in
\bact\b.
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Table 2.11. Predefined character classes.

Expressions Descriptions Examples
\d Any digit. Equivalent to [0-9] A\dC matches A0C, A1C, A2C,

A3C etc.
\D Any nondigit. Equivalent to [ˆ0-9]
\w Any word character: letter, digit,

or underscore. Equivalent to
[a-zA-Z0-9_]

1\w2 matches 1a2, 1A2, 1b2,
1B2, etc

\W Any nonword character. Equivalent to
[ˆ\w]

\s Any white space character: space, tab-
ulation, new line, form feed, carriage
return, or backspace.

\S Any nonwhite space character.
Equivalent to [ˆ\s]

[:alpha:] Any alphabetic character. It includes
accented characters

1[:alpha:]2 matches 1a2,
1A2, 1b2, 1B2, etc.

[:digit:] Any digit A[:digit:]C matches A0C,
A1C, A2C, A3C etc.

[:upper:] Any uppercase character. It includes
accented characters

A[:upper:]C matches AAC,
ABC, ACC, ADC etc.

[:lower:] Any lowercase character. It includes
accented characters

A[:lower:]C matches AaC,
AbC, AcC, AdC etc.

Table 2.12. Some metacharacters matching nonprintable characters.

Metachars Descriptions Examples
ˆ Matches the start of a line ˆab*c matches ac, abc, abbc, abbbc, etc.

when they are located at the beginning of a new
line

$ Matches the end of a line ab?c$ matches ac and abc when they are lo-
cated at the end of a line

\< Matches the start of a word \<abc matches abcd but not dabc
\> Matches the end of a word bcd\> matches abcd but not abcde
\n Matches a new line a\nb matches

a
b

\t Matches a tabulation –
\r Matches the carriage return

character
–

\f Matches the form feed char-
acter

–

\e Matches the escape charac-
ter

–

\a Matches the bell character –



2.3 Regular Expressions 41

2.3.5 Union and Boolean Operators

We reviewed the basic constructs to write regular expressions. A powerful feature
is that we can also combine expressions with operators, as with automata. Using a
mathematical term, we say that they define an algebra. Using a simpler analogy, this
means that we can arrange regular expressions just like arithmetic expressions. This
greatly eases the design of complex expressions and makes them very versatile.

Regex languages use three main operators. Two of them are already familiar to
us. The first one is the Kleene star or closure, denoted *. The second one is the con-
catenation, which is usually not represented. It is implicit in strings like abc, which
is the concatenation of characters a, b, and c. To concatenate the word computer, a
space symbol, and science, we just write them in a row: computer science.

The third operation is the union and is denoted “|”. The expression a|b means
either a or b. We saw that the regular expression [Cc]omputer [Ss]cience
could match four strings. We can rewrite an equivalent expression using the union
operator: Computer Science|Computer science|computer Science|
computer science. A union is also called an alternation because the corre-
sponding expression can match any of the alternatives, here four.

2.3.6 Operator Combination and Precedence

Regular expressions and operators are grouped using parentheses. If we omit them,
expressions are governed by rules of precedence and associativity. The expression
a|bc matches the strings a and bc because the concatenation operator takes prece-
dence over the union. In other words, the concatenation binds the characters stronger
than the union. If we want an expression that matches the strings ac and bc, we need
parentheses (a|b)c.

Let us examine another example of precedence. We rewrote the expression
[Cc]omputer [Ss]cience using a union of four strings. Since the difference
between expressions lies in the first letters only, we can try to revise this union into
something more compact. The character class [Cc] is equivalent to the alternation
C|c, which matches either C or c. A tentative expression could then be C|computer
S|science. But it would not match the desired strings; it would find occurrences of
either C, computer S, or science because of the operator precedence. We need paren-
theses to group the alternations (C|c)omputer (S|s)cience and thus match
the four intended strings.

The order of precedence of the three main operators union, concatenation, and
closure is as follows:

1. closure and other repetition operator (highest)
2. concatenation, line and word boundaries
3. union (lowest)

This entails that abc* describes the set ab, abc, abcc, abccc, etc. To repeat the
pattern abc, we need parentheses. And the expression (abc)* corresponds to abc,
abcabc, abcabcabc, etc.
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2.4 Programming with Regular Expressions

2.4.1 Perl

grep and egrep are tools to search patterns in texts. If we want to use them for
more elaborate text processing such as translating characters, substituting words,
counting them, we need a full-fledged programming language, for example, Perl,
Python, AWK, and Java with its java.util.regex package. They enable the
design of powerful regular expressions and at the same time, they are complete pro-
gramming languages. This section intends to give you a glimpse of Perl program-
ming. We discuss features of Perl in this chapter and the next one. Further references
include Wall et al. (2000) and Schwartz and Phoenix (2001).

2.4.2 Matching

Perl has constructs similar to those of the C language. It has analogous control flow
statements, and the assignment operator is denoted =. However, variables begin with
a dollar sign and are not typed. Comments start with the # symbol. The short program

# A first program
$integer = 30;
$pattern = "My string";
print $integer, " ", $pattern, "\n";

prints the line

30 My string

We run it with the command:

perl -w program.pl

where the option -w asks Perl to check syntax errors.
The next program reads the input line and searches the expression ab*c. If it

finds the expression, it prints the line:

while ($line = <>) {
if ($line =~ m/ab*c/) {

print $line;
}

}

The program uses repeat and conditional statements. The symbol <> designates
the standard input, and the instruction $line = <> assigns the current line from
the input to the $line variable. The while instruction reads all the lines until it
encounters an end of file. The m/.../ instruction delimits the regular expression
to match, and the =˜ operator instructs Perl to search it in the $line variable. If
the expression matches a string in $line, the =˜ operator returns true, or false
otherwise. The if instruction tells the program to print the input when it contains
the pattern. We run the program to search the file file_name with the command:
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perl -w program.pl file_name

The match operator supports a set of options also called modifiers. Their syntax
is m/regex/modifiers. Useful modifiers are

• Case insensitive: i. The instruction m/regex/i searches regex in the target
string regardless of its case.

• Multiple lines: m. By default, the anchors ˆ and $ match the start and the end
of the input string. The instruction m/regex/m considers the input string as
multiple lines separated by new line characters, where the anchors ˆ and $ match
the start and the end of any line in the string.

• Single line: s. Normally, a dot symbol “.” does not match new line characters.
The /smodifier makes a dot in the instruction m/regex/smatch any character
including new lines.

Modifiers can be grouped in any order as in m/regex/im, for instance, or
m/regex/sm, where a dot in regex matches any character and the anchors ˆ
and $ match just after and before new line characters.

2.4.3 Substitutions

One of the powerful features of Perl is pattern substitution. It uses a construct similar
to the match instruction: s/regex/replacement/. The instruction

$line =~ s/regex/replacement/

matches the first occurrence of regex and replaces it by replacement in the
$line variable. If we want to replace all the occurrences of a pattern, we use the g
modifier, where g stands for globally:

$line =~ s/regex/replacement/g

We shall write a program to replace the occurrences of ab*c by ABC in a file
and print them. We read all the lines of the input. We use the instruction m/ab*c/
to check whether they match the regular expression ab*c. We then print the old line
and we substitute the matched pattern using the construct s/ab*c/ABC/:

while ($line = <>) {
if ($line =~ m/ab*c/) {

print "Old: ", $line;
$line =~ s/ab*c/ABC/g;
print "New: ", $line;

}
}
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2.4.4 Translating Characters

The instruction tr/search_list/replacement_list/ replaces all the oc-
currences of the characters in search_list by the corresponding character in
replacement_list. The instruction tr/ABC/abc/ replaces the occurrences
of A, B, and C by a, b, and c, respectively. The string

AbCdEfGhIjKlMnOpQrStUvWxYzÉö

results in

abcdEfGhIjKlMnOpQrStUvWxYzÉö

The hyphen specifies a character range, as in the instruction

$line =~ tr/A-Z/a-z/;

which converts the uppercase characters to their lowercase equivalents. The instruc-
tion tr has useful modifiers:

• d deletes any characters of the search list that are not found in the replacement
list.

• c translates characters that belong to the complement of the search list.
• s reduces – squeezes, squashes – sequences of characters translated to an identi-

cal character to a single instance.

The instruction

$line =~ tr/AEIOUaeiou//d;

deletes all the vowels in $line and

$line =~ tr/AEIOUaeiou/\$/cs;

replaces all nonvowel characters by a $ sign. The contiguous sequences of translated
dollar signs are reduced to a single sign.

2.4.5 String Operators

Perl operators are similar to those of the C and Java languages. They are summa-
rized in Table 2.13. The string operators are notable differences. They enable us to
concatenate and compare strings.

The Boolean operators eq (equal) and ne (not equal) compare two strings. The
dot is the concatenation operator:

$string1 = "abc";
$string 2 = "def";
$string3 = $string1 . $string2;
print $string3;
#prints abcdef
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As with the C and Java operators, the shorthand notation $var1 .= $var2
is equivalent to $var1 = $var1 . $var2. The following program reads the
content of the input line by line, concatenates it in the $text variable, and prints it:

while ($line = <>) {
$text .= $line;

}
print $text;

Table 2.13. Summary of the main Perl operators.

Unary operators ! Logical not
+ and - Arithmetic plus sign and negation

Binding operators =˜ Returns true in case of match success
!˜ Returns false in case of match success

Arithmetic operators * and / Multiplication and division
+ and - Addition and subtraction

String operator . String concatenation

Arithmetic comparison oper-
ators

> and < Greater than and less than

>= and <= Greater than or equal and less than or equal
== and != Equal and not equal

String comparison operators ge and le Greater than and less than
gt and lt Greater than or equal and less than or equal
eq and ne Equal and not equal

Logical operators && Logical and
|| Logical or

2.4.6 Back References

It is sometimes useful to keep a reference to matched patterns or parts of them.
Let us imagine that we want to find a sequence of three identical characters, which
corresponds to matching a character and checking if the next two characters are
identical to the first character. To do this, we first tell Perl to remember the matched
pattern and we put parentheses around it. It creates a buffer to hold the pattern and
we refer back to it by the sequence \1. The instruction s/(.)\1\1/\*\*\*/g
replaces these sequences by three stars.
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Perl can create as many buffers as we need. It allocates a new one when it en-
counters a left parenthesis and refers it back by references \1, \2, \3, etc. The first
pair of parentheses corresponds to \1, the second pair to \2, the third to \3, etc.
Outside the match expression the \<digit> reference is denoted by $<digit>:
$1, $2, $3, etc. As an example, the next program captures occurrences of money
amounts in dollars. It prints the dollars and cents:

while ($line = <>) {
while ($line =~ m/\$ *([0-9]+)\.?([0-9]*)/g) {

print "Dollars: ", $1, " Cents: ", $2, "\n";
}

}

2.5 Finding Concordances

2.5.1 Concordances in Prolog

Concordances of a word, an expression, or more generally any string in a corpus
are easy to obtain with Prolog. Let us suppose that the corpus is represented as one
single big string: a list of characters. Concordancing simply consists in matching
the pattern we are searching as a substring of the whole list. There is no need to
consider the corpus structure, that is, whether it is made of blanks, words, sentences,
or paragraphs.

We implement the search with two auxiliary predicates: prefix(+List,
+Span, -Prefix) that extracts the prefix of a list with up to Span characters,
and prepend(+List, +Span, -PrependedList) that adds Span vari-
ables onto the beginning of a list.

Now let us write the concordance/4 predicate. It finds Pattern in List
and returns the first Line where it occurs. Span is the window size, for example,
15 characters to the left and to the right, within which Pattern will be displayed.
We first prepend Pattern with Span variables before it to match the pattern and
its right context. We find it with a combination of two append/3 calls; then we use
prefix/3 to extract up to Span characters after it.

% concordance(+Pattern, +List, +Span, -Line)
% finds Pattern in List and displays the Line
% where it appears within Span characters
% surrounding it.

concordance(Pattern, List, Span, Line) :-
name(Pattern, LPattern),
prepend(LPattern, Span, LeftPattern),
append(_, Rest, List),
append(LeftPattern, End, Rest),
prefix(End, Span, Suffix),
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append(LeftPattern, Suffix, LLine),
name(Line, LLine).

% prefix(+List, +Span, -Prefix) extracts the prefix
% of List with up to Span characters.
% The second rule is to check the case where there
% are less than Span character in List.

prefix(List, Span, Prefix) :-
append(Prefix, _, List),
length(Prefix, Span),
!.

prefix(Prefix, Span, Prefix) :-
length(Prefix, L),
L < Span.

% prepend(+List. +Span, -Prefix) adds Span variables
% to the beginning of List.

prepend(Pattern, Span, List) :-
prepend(Pattern, Span, Pattern, List).

prepend(_, 0, List, List) :- !.
prepend(Pattern, Span, List, FList) :-
Span1 is Span - 1,
prepend(Pattern, Span1, [X | List], FList).

Let us apply this program to retrieve the concordances of Helen in the Iliad. We
make concordance/4 backtrack until all the occurrences have been found:

?- read_file(’iliad.txt’, L), concordance(’Helen’, L,
20, C), write(C),nl, fail.

ry of still keeping Helen, for whose sake so
ry of still keeping Helen, for whose sake so
red for the sake of Helen. Nevertheless, if a
red for the sake of Helen. The men of Pylos
in their midst for Helen and all her wealth.
he midst of you for Helen and all her wealth.
nwhile Iris went to Helen in the form of her
ke the goddess, and Helen’s heart yearned aft
wood. When they saw Helen coming towards the
" "Sir," answered Helen, "father of my husb
...
No
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Because the pattern is prepended with exactly Span variables, the concordance
program will not examine the first Span characters of the file. This means that it will
not find a possible pattern in this sublist. In our example above, the program finds all
the occurrences of Helen except the ones that could occur in the first 15 characters
of the text. This is easily corrected in the program and is left as an exercise.

2.5.2 Concordances in Perl

Arrays in Perl. Writing a basic concordance program is also easy in Perl. How-
ever, to be convenient, the program must be able to read parameters from the com-
mand line – the file name, the pattern to search, and the span size of the concordance
– as in

perl -w concordance.pl corpus.txt my_word 15

These arguments are passed to Perl by the operating system under the form of an
array. Before writing the program, we introduce this feature now.

Arrays in Perl are data structures that can hold any number of elements of any
type. Their name begins with an at sign, @, for example, @array. Each element has
a position where the programmer can store and read data using the position index.

An array grows or shrinks automatically when elements are appended, inserted,
or deleted. Perl manages the memory without any intervention from the programmer.
Here are some examples of arrays:

@array1 = (); # The empty array
@array2 = (1, 2, 3); # Array containing 1, 2, and 3

$var1 = 3.14;
$var2 = "my string";
@array3 = (1, $var1, "Prolog", $var2);
# Array containing four elements of different type

@array4 = (@array2,@array3);
#Same as (1, 2, 3, 1, 3.14, "Prolog", "my string")

Reading or assigning a value to a position of the array is done using its index
between square brackets starting from 0:

print $array2[1]; # prints 2

If an element is assigned to a position that did not exist before, Perl grows the
array to store it. The positions in-between are not initialized. They hold the value
undef:

$array4[10] = 10;
print $array4[10]; # prints 10
print $array4[9];
# prints a message telling it is undefined
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The existence of a variable can be tested using the defined Boolean function
as in:

if (defined($array4[9])) {
print "yes", "\n";

} else {
print "no", "\n";

}

If an undef value is used as a number, it is considered to be a zero. The next
two lines print 1.

$array4[9]++;
print $array4[9];

The variable $#array is the index of the last element of the array. It can be
assigned to grow or shrink the array:

$length4 = $#array4;
print $length4; # prints 10
print $#array2; # prints 2
$#array4 = 5; # shrinks the array to 6 elements.

# Other elements are lost.
print $array4[10];
# prints a message telling it is undefined
$#array2 = 10; # extends the array to 11 elements.

# Indices 3..10 are undefined.

You can also assign a complete array to an array and an array to a list of variables
as in:

@array5 = @array2;
($v1, $v2, $v3) = @array2;

where @array5 contains a copy of @array2, and $v1, $v2, $v3 contain respec-
tively 1, 2, and 3.

Printing Concordances in Perl. Now let us write a concordance program modi-
fied from Cooper (1999). First, we read the command line arguments: the file name,
the pattern to search, and the span size. They are stored in the reserved variable
@ARGV. We open the file using the open function, which assigns the stream to the
FILE identifier. If open fails, the program exits using die and prints a message to
inform us that it could not open the file.

The notation <FILE> designates the input stream, which is assigned to the
$line variable. We read all the text and we assign it to the $text variable. To allow
matching across spaces, tabulations, and new lines, we replace spaces in the regular
expression $pattern representing the pattern to search by the space metacharacter
\s. We also replace the new lines in the text by a space.
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Finally, we use a while loop to match the pattern with $width characters to
the left and to the right. The /g modifier enables the m/.../ instruction to match a
pattern and to start a new search from its current position – where the previous match
ended. When m/.../g fails to match, the start position is reset to the beginning
of the string. We create a back reference by setting parentheses around the regular
expression to remember the matched pattern and we print it.

($file_name, $pattern, $width) = @ARGV;
open(FILE, "$file_name") ||

die "Could not open file $file_name.";
while ($line = <FILE>) {
$text .= $line;

}
$pattern =~ s/ /\\s/g;

# spaces match tabs and new lines
$text =~ s/\n/ /g;

# new lines are replaced by spaces
while ($text =~ m/(.{0,$width}$pattern.{0,$width})/g){

# matches the pattern with 0..width
#to the right and left

print "$1\n"; #$1 contains the match
}

Now let us run the command:

perl -w concordance.pl odyssey.txt Penelope 20

itors of his mother Penelope, who persist in eat
ying out yet, while Penelope has such a fine son
upon the Achaeans. Penelope, daughter of Icariu
d of Ulysses and of Penelope in your veins I see
long-suffering wife Penelope, and his son Telema
It was not long ere Penelope came to know what t
reshold of her room Penelope said: "Medon, what

2.6 Approximate String Matching

So far, we have used regular expressions to match exact patterns. However, in many
applications, such as in spell checkers, we need to extend the match span to search
a set of related patterns or strings. In this section, we review techniques to carry out
approximate or inexact string matching.

2.6.1 Edit Operations

A common method to create a set of related strings is to apply a sequence of edit
operations that transforms a source string s into a target string t. The operations are
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carried out from left to right using two pointers that mark the position of the next
character to edit in both strings:

• The copy operation is the simplest. It copies the current character of the source
string to the target string. Evidently, the repetition of copy operations produces
equal source and target strings.

• Substitution replaces one character from the source string by a new character
in the target string. The pointers are incremented by one in both the source and
target strings.

• Insertion inserts a new character in the target string. The pointer in the target
string is incremented by one, but the pointer in the source string is not.

• Deletion deletes the current character in the target string, i.e., the current char-
acter is not copied in the target string. The pointer in the source string is incre-
mented by one, but the pointer in the target string is not.

• Reversal (or transposition) copies two adjacent characters of the source string
and transposes them in the target string. The pointers are incremented by two
characters.

Kernighan et al. (1990) illustrate these operations with the misspelled word
acress and its possible corrections (Table 2.14).

Table 2.14. Typographical errors (typos) and corrections. Strings differ by one operation. The
correction is the source and the typo is the target. Unless specified, other operations are just
copies. After Kernighan et al. (1990).

Typo Correction Source Target Position Operation
acress actress – t 2 Deletion
acress cress a – 0 Insertion
acress caress ac ca 0 Transposition
acress access r c 2 Substitution
acress across e o 3 Substitution
acress acres s – 4 Insertion
acress acres s – 5 Insertion

If we allow only one edit operation on a source string of length n, and if we con-
sider an alphabet of 26 unaccented letters, the deletion will generate n new strings;
the insertion, (n + 1) × 26 strings; the substitution, n × 25; and the transposition,
n − 1 new strings.

2.6.2 Minimum Edit Distance

Complementary to edit operations, edit distances measure the similarity between
strings. They assign a cost to each edit operation, usually 0 to copies and 1 to dele-
tions and insertions. Substitutions and transpositions correspond both to an insertion
and a deletion. We can derive from this that they each have a cost of 2. Edit distances
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tell how far a source string is from a target string: the lower the distance, the closer
the strings.

Given a set of edit operations, the minimum edit distance is the operation se-
quence that has the minimal cost needed to transform the source string into the target
string. If we restrict the operations to copy/substitute, insert, and delete, we can rep-
resent the edit operations using a table, where the distance at a certain position in
the table is derived from distances in adjacent positions already computed. This is
expressed by the formula:

edit_distance(i, j) = min

⎛
⎝ edit_distance(i − 1, j) + del_cost

edit_distance(i − 1, j − 1) + subst_cost
edit_distance(i, j − 1) + ins_cost

⎞
⎠ .

The boundary conditions for the first row and the first column correspond to a
sequence of deletions and of insertions. They are defined as edit_distance(i, 0) = i
and edit_distance(0, j) = j.

We compute the cell values as a walk through the table from the beginning of the
strings at the bottom left corner, and we proceed upward and rightward to fill adjacent
cells from those where the value is already known. Arrows in Fig. 2.10 represent the
three edit operations, and Table 2.15 shows the distances to transform language into
lineage. The value of the minimum edit distance is 5 and is shown at the upper right
corner of the table.

i − 1, j i, j

i − 1, j − 1 i, j − 1

delete

replace
insert

Fig. 2.10. Edit operations.

Table 2.15. Distances between language and lineage.

e 7 6 5 6 5 6 7 6 5
g 6 5 4 5 4 5 6 5 6
a 5 4 3 4 5 6 5 6 7
e 4 3 4 3 4 5 6 7 6
n 3 2 3 2 3 4 5 6 7
i 2 1 2 3 4 5 6 7 8
l 1 0 1 2 3 4 5 6 7

Start 0 1 2 3 4 5 6 7 8
– Start l a n g u a g e
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The minimum edit distance algorithm is part of the dynamic programming tech-
niques. Their principles are relatively simple. They use a table to represent data, and
they solve a problem at a certain point by combining solutions to subproblems. Dy-
namic programming is a generic term that covers a set of widely used methods in
optimization.

We implement the minimum edit distance in Perl. We introduce the length
function to compute the length of the source and target, and we use split(//,
$string) to convert a string into an array of characters. The instruction

@array = split(regex, $string)

breaks up the $string variable as many times as regex matches in $string.
The regex expression acts as a separator, and the string pieces are assigned sequen-
tially to @array. In the program, regex is reduced to nothing and assigns all the
characters $string as elements of @array.

($source, $target) = @ARGV;
$length_s = length($source);
$length_t = length($target);
# Initialize first row and column
for ($i = 0; $i <= $length_s; $i++) {
$table[$i][0] = $i;

}
for ($j = 0; $j <= $length_t; $j++) {
$table[0][$j] = $j;

}
# Get the characters. Start index is 0
@source = split(//, $source);
@target = split(//, $target);
# Fills the table.
# Start index of rows and columns is 1
for ($i = 1; $i <= $length_s; $i++) {
for ($j = 1; $j <= $length_t; $j++) {

# Is it a copy or a substitution?
$cost = ($source[$i-1] eq $target[$j-1]) ? 0: 2;
# Computes the minimum
$min = $table[$i-1][$j-1] + $cost;
if ($min > $table[$i][$j-1] + 1) {
$min = $table[$i][$j-1] + 1;

}
if ($min > $table[$i-1][$j] + 1) {
$min = $table[$i-1][$j] + 1;

}
$table[$i][$j] = $min;

}
}
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print "Minimum distance: ",
$table[$length_s][$length_t], "\n";

2.6.3 Searching Edits in Prolog

Once we have filled the table, we can search the operation sequences that correspond
to the minimum edit distance. Such a sequence is also called an alignment.

The depth-first strategy is an economical way to traverse a search space. It is
easy to implement in Prolog and has low memory requirements. The problem with
it is that it blindly selects the paths to follow and can explore very deep nodes while
ignoring shallow ones. To avoid this, we apply a variation of the depth-first search
where we fix the depth in advance to the minimum edit distance. We assign it in the
call parameter Cost of edit_distance/4.

The code of the depth-limited search is similar to the depth-first program (see
Appendix A). We add a counter in the recursive case that represents the current
search depth and we increment it until we have reached the depth limit. We compute
each individual edit operation and its cost with theedit_operation/6 predicate.

% edit_distance(+Source, +Target, -Edits, +Cost).
edit_distance(Source, Target, Edits, Cost) :-
edit_distance(Source, Target, Edits, 0, Cost).

edit_distance([], [], [], Cost, Cost).
edit_distance(Source, Target, [EditOp | Edits], Cost,

FinalCost) :-
edit_operation(Source, Target, NewSource,

NewTarget, EditOp, CostOp),
Cost1 is Cost + CostOp,
edit_distance(NewSource, NewTarget, Edits, Cost1,

FinalCost).

% edit_operation carries out one edit operation
% between a source string and a target string.
edit_operation([Char | Source], [Char | Target],

Source, Target, ident, 0).
edit_operation([SChar | Source], [TChar | Target],

Source, Target, sub(SChar,TChar), 2) :-
SChar \= TChar.

edit_operation([SChar | Source], Target, Source,
Target, del(SChar), 1).

edit_operation(Source, [TChar | Target], Source,
Target, ins(TChar), 1).

Using backtracking, Prolog finds all the alignments. We obtain with the minimum
distance of 5:
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?- edit_distance([l,a,n,g,u,a,g,e], [l,i,n,e,a,g,e],
E, 5).

E = [ident, sub(a, i), ident, sub(g, e), del(u),
ident, ident, ident] ;

E = [ident, sub(a, i), ident, del(g), sub(u, e),
ident, ident, ident] ;

E = [ident, sub(a, i), ident, del(g), del(u), ins(e),
ident, ident, ident]

...

with 15 possible alignments in total. Figure 2.6.3 shows the first and third ones.

First alignment Third alignment

Without epsilon symbols

l a n g u a g e

l i n e a g e

l a n g u a g e 

l i n e a g e 

With epsilon symbols

l a n g u a g e

l i n e  a g e

l a n g u  a g e

l i n  e a g e

Fig. 2.11. Alignments of lineage and language. The figure contains two possible represen-
tations of them. In the upper row, the deletions in the source string are in italics, as are the
insertions in the target string. The lower row shows a synchronized alignment, where dele-
tions in the source string as well as the insertions in the target string are aligned with epsilon
symbols (null symbols).

We can apply this Prolog search program alone to find the edit distance. We avoid
going an infinite path with an iterative deepening. We start with an edit distance of 0
(the Cost parameter) and we increment it – 1, 2, 3, 4 – until we find the minimum
edit distance. The first searches will fail, and the first one that succeeds corresponds
to the minimum distance.

2.7 Further Reading

Corpora are now easy to obtain. Organizations such as the Linguistic Data Con-
sortium and ELRA collect and distribute texts in many languages. Although not
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widely cited, the first fiction corpus with more than 100 million words was probably
FranText, which helped write the Trésor de la langue française (Imbs 1971–1994).
Other early corpora include the Bank of English, which contributed to the Collins
COBUILD Dictionary (Sinclair 1987).

Text and corpus analysis are an active focus of research in computational lin-
guistics. They include the description of word distributions that were theorized at the
beginning of the 20th century by Bloomfield and followers such as Harris (1962).
Paradoxically, natural language processing conducted by computer scientists largely
ignored corpora until the 1990s, when it rediscovered techniques routinely used in
humanities. For a short history, see Zampolli (2003).

Roche and Schabes (1997, Chap. 1) is a concise and clear introduction to
automata theory. It makes an extensive use of mathematical notations, however.
Hopcroft et al. (2001) is a standard and comprehensive textbook on automata and
regular expressions. Friedl (2002) is a thorough presentation of regular expressions
oriented toward applications and programming techniques.

Although the idea of automata underlies some mathematical theories of the 19th
century such as those of Markov, Gödel, or Turing, Kleene (1956) was first to give
a formal definition. He also proved the equivalence between regular expressions and
FSA. Thompson (1968) was the first to implement a widely used editor embedding
a regular expression tool: Global/Regular Expression/Print, better known as grep.

There are several FSA toolkits available from the Internet. The FSA utilities (van
Noord and Gerdemann 2001) is a Prolog package to manipulate regular expressions,
automata, and transducers (odur.let.rug.nl/˜vannoord/Fsa/). The FSM library (Mohri
et al. 1998) is another set of tools (www.research.att.com/sw/tools/fsm/). Both in-
clude rational operations – union, concatenation, closure, reversal – and equivalence
transformation – ε-elimination, determinization, and minimization.

Exercises

2.1. Implement the automaton in Fig. 2.5.

2.2. Implement a Prolog program to automatically construct an automaton to search
a given input string.

2.3. Write a regular expression that finds occurrences of honour and honor in a text.

2.4. Write a regular expression that finds lines containing all the vowels a, e, i, o, u,
in that order.

2.5. Write a regular expression that finds lines consisting only of letters a, b, or c.

2.6. List the strings generated by the expressions:

(ab)*c
(a.)*c
(a|b)*
a|b*|(a|b)*a
a|bc*d
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2.7. Complement the Prolog concordance program to sort the lines according to
words appearing on the right of the string to search.

2.8. Write the iterative deepening search in Prolog to find the minimum edit distance.
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Encoding, Entropy, and Annotation Schemes

3.1 Encoding Texts

At the most basic level, computers only understand binary digits and numbers. Cor-
pora as well as any computerized text have to be converted into a digital format to be
read by machines. From their American early history, computers inherited encoding
formats designed for the English language. The most famous one is the American
Standard Code for Information Interchange (ASCII). Although well established for
English, the adaptation of ASCII to other languages led to clunky evolutions and
many variants. It ended (temporarily?) with Unicode, a universal scheme compatible
with ASCII and intended to cover all the scripts of the world.

We saw in Chap. 2 that some corpora include linguistic information to com-
plement raw texts. This information is conveyed through annotations that describe
quantities of structures. They range from text organization, such as titles, paragraphs,
and sentences, to semantic information including grammatical data, part-of-speech
labels, or syntactic structures, etc. In contrast to character encoding, no annotation
scheme has yet reached a level where it can claim to be a standard. However, the Ex-
tensible Markup Language (XML), a language to define annotations, is well under-
way to unify them under a shared markup syntax. XML in itself is not an annotation
language. It is a scheme that enables users to define annotations within a specific
framework.

In this chapter, we will introduce the most useful character encoding schemes
and review the basics of XML. We will examine related topics of standardized pre-
sentation of time and date, and how to sort words in different languages. Finally, we
will introduce two significant theoretical concepts behind codes – entropy and per-
plexity – how they can help design efficient codes, and how we can use them in a
machine-learning algorithm.
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3.2 Character Sets

3.2.1 Representing Characters

Words, at least in European languages, consists of characters. Prior to any further
digital processing, it is necessary to build an encoding scheme that maps the character
or symbol repertoire of a language to numeric values – integers. The Baudot code
is one of the oldest electric codes. It uses five bits and hence has the capacity to
represent 25 = 32 characters: the Latin alphabet and some control commands like
the carriage return, the bell. The ASCII code uses seven bits. It can represent 27 =
128 symbols with positive integer values ranging from 0 to 127. The characters use
the contiguous positions from 32 to 126. The values in the interval [0, 31] and 127
correspond to controls used, for instance, in data transmission (Table 3.1).

Table 3.1. The ASCII character set.

Code Char Code Char Code Char Code Char
32 33 ! 34 " 35 #
36 $ 37 % 38 & 39 ’
40 ( 41 ) 42 * 43 +
44 , 45 - 46 . 47 /
48 0 49 1 50 2 51 3
52 4 53 5 54 6 55 7
56 8 57 9 58 : 59 ;
60 < 61 = 62 > 63 ?
64 @ 65 A 66 B 67 C
68 D 69 E 70 F 71 G
72 H 73 I 74 J 75 K
76 L 77 M 78 N 79 O
80 P 81 Q 82 R 83 S
84 T 85 U 86 V 87 W
88 X 89 Y 90 Z 91 [
92 \ 93 ] 94 ˆ 95 _
96 ‘ 97 a 98 b 99 c

100 d 101 e 102 f 103 g
104 h 105 i 106 j 107 k
108 l 109 m 110 n 111 o
112 p 113 q 114 r 115 s
116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 {
124 | 125 } 126 ˜ 127

ASCII was created originally for English. It cannot handle other European lan-
guages that have accented letters, such as é, à, or other diacritics like ø and ä, not
to mention languages that do not use the Latin alphabet. Table 3.2 shows charac-
ters used in French and German that are ignored by ASCII. Most computers used to



3.2 Character Sets 61

represent characters on octets – words of eight bits – and ASCII was extended with
the eighth unoccupied bit to the values [128, 255] (28 = 256). Unfortunately, these
extensions were not standardized and depended on the operating system. The same
character, for instance, ê, could have a different encoding in the Windows, Macin-
tosh, and Unix operating systems.

Table 3.2. Characters specific to French and German.

French German
Lowercase à â æ ç é è ê ë î ï ô œ ù û ü ÿ ä ö ü ß
Uppercase À Â Æ Ç É È Ê Ë Î Ï Ô Œ Ù Û Ü Ÿ Ä Ö Ü

The ISO Latin 1 character set (ISO-8859-1) is a standard that tried to reconcile
Western European character encodings (Table 3.3). Unfortunately, Latin 1 was ill-
designed and forgot characters such as the French Œ, œ, the German quote „ or the
Dutch ij, IJ . Operating systems such as Windows and Mac OS used a variation of
it that they had to complement with the missing characters. They used positions in
the interval ranging from 128 to 159 (Table 3.4). Later, ISO Latin 9 (ISO-8859-15)
updated Latin 1. It restored forgotten French and Finnish characters and added the
euro currency sign, e.

3.2.2 Unicode

While ASCII has been very popular, its 128 positions could not support the char-
acters of many languages in the world. Therefore a group of companies formed a
consortium to create a new, universal coding scheme: Unicode. Unicode is quickly
replacing older encoding schemes, and Windows, Mac OS, and Java platforms now
adopt it while sometimes ensuring backward compatibility.

The initial goal of Unicode was to define a superset of all other character sets,
ASCII, Latin 1, and others, to represent all the languages of the world. The Unicode
consortium has produced character tables of most alphabets and scripts of Euro-
pean, Asian, African, and Near Eastern languages, and assigned numeric values to
the characters. Unicode started with a 16-bit code that could represent up to 65,000
characters. It has subsequently been extended to 32 bits.

The Universal Character Set (UCS) is the standardized name of the Unicode
character representation. The 2-octet code (UCS-2) is called the Basic Multilingual
Plane (BMP). All common characters fit on 16 bits, with the exception of some
Chinese ideograms. The 4-octet code (UCS-4) can represent more than a million
characters. They cover all the UCS-2 characters and rare characters: historic scripts,
some mathematical symbols, private characters, etc.

Unicode groups characters or symbols by script – Latin, Greek, Cyrillic, Hebrew,
Arabic, Indic, Japanese, Chinese – and identifies each character by a single hexadec-
imal number, called the code point, and a name as
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Table 3.3. The ISO Latin 1 character set (ISO-8859-1).

Code Char SGML Code Char SGML Code Char SGML
160 &nbsp; 161 ¡ &iexcl; 162 ¢ &cent;
163 £ &pound; 164 ¤ &curren; 165 ¥ &yen;
166 ¦ &brvbar 167 § &sect; 168 ¨ &uml;
169 © &copy; 170 ª &ordf; 171 « &laquo;
172 ¬ &not; 173 - &shy; 174 ® &reg
175 ¯ &macr; 176 ° &deg; 177 ± &plusmn;
178 ² &sup2; 179 ³ &sup3; 180 ´ &acute;
181 µ &micro; 182 ¶ &para; 183 · &middot;
184 ¸ &cedil; 185 ¹ &sup1; 186 º &ordm;
187 » &raquo; 188 ¼ &frac14; 189 ½ &frac12;
190 ¾ &frac34; 191 ¿ &iquest; 192 À &Agrave;
193 Á &Aacute; 194 Â &Acirc; 195 Ã &Atilde;
196 Ä &Auml; 197 Å &Aring; 198 Æ &Aelig;
199 Ç &Ccedil; 200 È &Egrave; 201 É &Eacute;
202 Ê &Ecirc; 203 Ë &Euml; 204 Ì &Igrave;
205 Í &Iacute; 206 Î &Icirc; 207 Ï &Iuml;
208 Ð &ETH; 209 Ñ &Ntilde; 210 Ò &Ograve;
211 Ó &Oacute; 212 Ô &Ocirc; 213 Õ &Otilde;
214 Ö &Ouml; 215 × &times; 216 Ø &Oslash;
217 Ù &Ugrave; 218 Ú &Uacute; 219 Û &Ucirc;
220 Ü &Uuml; 221 Ý &Yacute; 222 Þ &THORN;
223 ß &szlig; 224 à &agrave; 225 á &aacute;
226 â &acirc; 227 ã &atilde; 228 ä &auml;
229 å &aring; 230 æ &aelig; 231 ç &ccedil;
232 è &egrave; 233 é &eacute; 234 ê &ecirc;
235 ë &euml; 236 ì &igrave; 237 í &iacute;
238 î &icirc; 239 ï &iuml; 240 ð &eth;
241 ñ &ntilde; 242 ò &ograve; 243 ó &oacute;
244 ô &ocirc; 245 õ &otilde; 246 ö &ouml;
247 ÷ &divide; 248 ø &oslash; 249 ù &ugrave;
250 ú &uacute; 251 û &ucirc; 252 ü &uuml;
253 ý &yacute; 254 þ &thorn; 255 ÿ &yuml;

U+0041 LATIN CAPITAL LETTER A
U+0042 LATIN CAPITAL LETTER B
U+0043 LATIN CAPITAL LETTER C

. . .

U+0391 GREEK CAPITAL LETTER ALPHA
U+0392 GREEK CAPITAL LETTER BETA
U+0393 GREEK CAPITAL LETTER GAMMA

The U+ symbol means that the number after it corresponds to a Unicode position.
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Table 3.4. The Windows and Mac OS extensions to the ISO Latin 1 set represent some of the
forgotten Western European characters, here Windows Latin 1 or Windows-1252.

Code Char Code Char Code Char Code Char
128 e 129 130 ‚ 131 f
132 „ 133 . . . 134 † 135 ‡
136 ˆ 137 ‰ 138 Š 139 ‹
140 Œ 141 142 Ž 143
144 145 ‘ 146 ’ 147 “
148 ” 149 • 150 – 151 —
152 ˜ 153 ™ 154 š 155 ›
156 œ 157 158 ž 159 Ÿ

Unicode also allows the composition of accented characters from a base character
and one or more diacritics. That is the case for the French Ê or the Scandinavian Å,
which can be defined as combinations. They are created by typing a sequence of two
keys: E + ˆ and A + ˚, corresponding to

U+0045 LATIN CAPITAL LETTER E
U+0302 COMBINING CIRCUMFLEX ACCENT
U+0041 LATIN CAPITAL LETTER A
U+030A COMBINING RING ABOVE

Both characters also have a single code point:

U+00CA LATIN CAPITAL LETTER E WITH CIRCUMFLEX
U+00C5 LATIN CAPITAL LETTER A WITH RING ABOVE

The resulting graphical symbol is called a grapheme. A grapheme is a “natural”
character or a symbol. It may correspond to a single code point as E or A, or result
from a composition as Ê or Å.

Unicode allocates contiguous blocks of code to scripts from U+0000. They start
with alphabetic scripts: Latin, Greek, Cyrillic, Hebrew, Arabic, etc., then the symbols
area, and Asian ideograms or alphabets. Ideograms used by the Chinese, Japanese,
and Korean (CJK) languages are unified to avoid duplication. Table 3.5 shows the
script allocation. The space devoted to Asian scripts occupies most of the table.

3.2.3 The Unicode Encoding Schemes

Unicode offers three major different encoding schemes: UTF-8, UTF-16, and UTF-
32. The UTF schemes – Unicode transformation format – encode the same data by
units of 8, 16, or 32-bits and can be converted from one to another without loss.

UTF-16 was the original encoding scheme when Unicode started with 16 bits. It
uses fixed units of 16 bits – 2 bytes – to encode directly most characters. The code
units correspond to the sequence of their code points using precomposed characters,
such as Ê in FÊTE
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Table 3.5. Unicode subrange allocation of the Universal Character Set (simplified).

Code Name Code Name
U+0000 Basic Latin U+1400 Unified Canadian Aboriginal

Syllabic
U+0080 Latin-1 Supplement U+1680 Ogham, Runic
U+0100 Latin Extended-A U+1780 Khmer
U+0180 Latin Extended-B U+1800 Mongolian
U+0250 IPA Extensions U+1E00 Latin Extended Additional
U+02B0 Spacing Modifier Letters U+1F00 Extended Greek
U+0300 Combining Diacritical Marks U+2000 Symbols
U+0370 Greek U+2800 Braille Patterns
U+0400 Cyrillic U+2E80 CJK Radicals Supplement
U+0530 Armenian U+2F80 KangXi Radicals
U+0590 Hebrew U+3000 CJK Symbols and Punctuation
U+0600 Arabic U+3040 Hiragana, Katakana
U+0700 Syriac U+3100 Bopomofo
U+0780 Thaana U+3130 Hangul Compatibility Jamo
U+0900 Devanagari, Bengali U+3190 Kanbun
U+0A00 Gurmukhi, Gujarati U+31A0 Bopomofo Extended
U+0B00 Oriya, Tamil U+3200 Enclosed CJK Letters and Months
U+0C00 Telugu, Kannada U+3300 CJK Compatibility
U+0D00 Malayalam, Sinhala U+3400 CJK Unified Ideographs Extension A
U+0E00 Thai, Lao U+4E00 CJK Unified Ideographs
U+0F00 Tibetan U+A000 Yi Syllables
U+1000 Myanmar U+A490 Yi Radicals
U+10A0 Georgian U+AC00 Hangul Syllables
U+1100 Hangul Jamo U+D800 Surrogates
U+1200 Ethiopic U+E000 Private Use
U+13A0 Cherokee U+F900 Others

0046 00CA 0054 0045

or composing it as with E+ˆ in FEˆTE

0046 0045 0302 0054 0045

UTF-8 is a variable-length encoding. It maps the ASCII code characters U+0000
to U+007F to their byte values 00 to 7F. It then takes on the legacy of ASCII. All the
other characters in the range U+007F to U+FFFF are encoded as a sequence of two
or more bytes. Table 3.6 shows the mapping principles of the 32-bit character code
points to 8-bit units.

Let us encode FÊTE in UTF-8. The letters F, T, and E are in the range U-
00000000 – U-0000007F. Their numeric code values are exactly the same in ASCII
and UTF-8. The code point of Ê is U+00CA and is in the range U-00000080 – U-
000007FF. Its binary representation is 0000 0000 1100 1010. UTF-8 uses the 11
rightmost bits of 00CA. The first five underlined bits together with the prefix 110
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Table 3.6. Mapping of 32-bit character code points to 8-bit units according to UTF-8. The xxx
corresponds to the rightmost bit values used in the character code points.

Range Encoding
U-00000000 – U-0000007F 0xxxxxxx
U-00000080 – U-000007FF 110xxxxx 10xxxxxx
U-00000800 – U-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
U-00010000 – U-001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
U-00200000 – U-03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
U-04000000 – U-7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

10xxxxxx

form the octet 1100 0011 that corresponds to C3 in hexadecimal. The seven next
boldface bits with the prefix 10 form the octet 1000 1010 or 8A in hexadecimal.
The letter Ê is then encoded as 1100 0011 1000 1010 or C3 8A in UTF-8. Hence,
the word FÊTE and the code points U+0046 U+00CA U+0054 U+0045 are en-
coded as

46 C3 8A 54 45

UTF-32 represents exactly the codes points by their code values. One question
remains: How does UTF-16 represent the code points above U+FFFF? The answer is:
it uses two surrogate positions consisting of a high surrogate in the range U+DC00 ..
U+DFFF and a low surrogate in the range U+D800 .. U+DBFF. This is made possible
because the Unicode consortium does not expect to assign characters beyond the
code point U+10FFFF. Using the two surrogates, characters between U+10000 and
U+10FFFF can be converted from UTF-32 to UTF-16, and vice versa.

Finally, the storage requirements of the Unicode encoding schemes are, of
course, different and depend on the language. A text in English will have approx-
imately the same size in ASCII and in UTF-8. The size of the text will be doubled in
UTF-16 and four times its original size in UTF-32, because all characters take four
bytes.

A text in a Western European language will be larger in UTF-8 than in ASCII
because of the accented characters: a nonaccented character takes one octet, and an
accented one takes two. The exact size will thus depend on the proportion of accented
characters. The text size will be twice its ASCII size in UTF-16. Characters in the
surrogate space take 4 bytes, but they are very rare and should not increase the storage
requirements. UTF-8 is then more compact for most European languages. This is not
the case with other languages. A Chinese or Indic character takes, on average, three
bytes in UTF-8 and only two in UTF-16.
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3.3 Locales and Word Order

3.3.1 Presenting Time, Numerical Information, and Ordered Words

In addition to using different sets of characters, languages often have specific pre-
sentations for times, dates, numbers, or telephone numbers, even when they are
restricted to digits. Most European languages outside English would write π =
3, 14159 instead of π = 3.14159. Inside a same language, different communities may
have different presentation conventions. The US English date February 24, 2003,
would be written 24 February 2003 or February 24th, 2003, in England. It would
be abridged 2/24/03 in the United States, 24/02/2003 in Britain, and 2003/02/24 in
Sweden. Some communities may be restricted to an administration or a company,
for instance, the military in the US, which writes times and dates differently than the
rest of the society.

The International Organization for Standardization (ISO) has standardized the
identification of languages and communities under the name of locales. Each locale
uses a set of rules that defines the format of dates, times, numbers, currency, and how
to sort – collate – strings of characters. A locale is defined by three parameters: the
language, the region, and the variant that corresponds to more specific conventions
used by a restricted community. Table 3.7 shows some locales for English, French,
and German.

Table 3.7. Examples of locales.

Locale Language Region Variant
English (United States) en US
English (United Kingdom) en GB
French (France) fr FR
French (Canada) fr CA
German (Germany) de DE
German (Austria) de AT

One of the most significant features of a locale is the collation component that
defines how to compare and order strings of characters. In effect, elementary sorting
algorithms consider the ASCII or Unicode values with a predefined comparison op-
erator such as the inequality predicate @</2 in Prolog. They determine the lexical
order using the numerical ranking of the characters.

These basic sorting procedures do not arrange the words in the classical dictio-
nary order. In ASCII as well as in Unicode, lowercase letters have a greater code
value than uppercase ones. A basic algorithm would then sort above after Zambia,
which would be quite misleading for most users.

Current dictionaries in English, French, and German use a different convention.
The lowercase letters precede their uppercase equivalents when the strings are equal
except for the case. Table 3.8 shows the collation results for some strings.
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Table 3.8. Sorting with the ASCII code comparison and the dictionary order.

ASCII order Dictionary order
ABC abc
Abc Abc
Def ABC
aBf aBf
abc def
def Def

A basic sorting algorithm may suffice for some applications. However, most of
the time it would be unacceptable when the ordered words are presented to a user.
The result would be even more confusing with accented characters, since their loca-
tion is completely random in the extended ASCII tables.

In addition, the lexicographic ordering of words varies from language to lan-
guage. French and English dictionaries sort accented letters as nonaccented ones,
except when two strings are equal except for the accents. Swedish dictionaries treat
the letters Å, Ä, and Ö as distinct symbols of the alphabet and sort them after Z. Ger-
man dictionaries have two sorting standards. They process accented letters either as
single characters or as couples of nonaccented letters. In the latter case, Ä, Ö, Ü, and
ß are considered respectively as AE, OE, UE, and ss.

3.3.2 The Unicode Collation Algorithm

The Unicode consortium has defined a collation algorithm that takes into account the
different practices and cultures in lexical ordering. It can be parameterized to cover
most languages and conventions. It uses three levels of difference to compare strings.
We outline their features for European languages and Latin scripts:

• The primary level considers differences between base characters, for instance,
between A and B.

• If there are no differences at the first level, the secondary level considers the
accents on the characters.

• And finally, the third level considers the case differences between the characters.

These level features are general, but not universal. Accents are a secondary differ-
ence in many languages, but we saw that Swedish sorts accented letters as individual
ones and hence sets a primary difference between A and Å, or o and Ö. Depending
on the language, the levels may have other features.

To deal with the first level, the Unicode collation algorithm defines classes of
letters that gather upper- and lowercase variants, accented and unaccented forms.
Hence, we have the ordered sets: {a, A, á, Á, à, À, etc.} < {b, B} < {c, C, ć, Ć, ĉ, Ĉ,
ç, Ç, etc.} < {e, E, é, É, è, È, ê, Ê, ë, Ë, etc.} < . . . .

The second level considers the accented letters if two strings are equal at the
first level. Accented letters are ranked after their nonaccented counterparts. The first
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accent is the acute one (´), then come the grave accent (`), the circumflex (ˆ), and the
umlaut (¨). So, instances of letter E with accents, in lower- and uppercase have the
order: {e, E} << {é, É} << {è, È} << {ê, Ê} << {ë, Ë}, where << denotes a difference
at the second level. The comparison at the second level is done from the left to the
right of a word in English and most languages. It is carried out from the right to the
left in French, i.e., from the end of a word to its beginning.

Similarly, the third level considers the case of letters when there are no differ-
ences at the first and second levels. Lowercase letters are before uppercase ones, that
is, {a} <<< {A}, where <<< denotes a difference at the third level.

Table 3.9 shows the lexical order of pêcher ‘peach tree’ and Péché ‘sin’, together
with various conjugated forms of the verbs pécher ‘to sin’ and pêcher ‘to fish’ in
French and English. The order takes the three levels into account and the reversed
direction of comparison in French for the second level. German adopts the English
sorting rules for these accents.

Table 3.9. Lexical order of words with accents. Note the reversed order of the second level
comparison in French.

English French
Péché pèche
PÉCHÉ pêche
pèche Pêche
pêche Péché
Pêche PÉCHÉ
pêché pêché
Pêché Pêché
pécher pécher
pêcher pêcher

Some characters are expanded or contracted before the comparison. In French,
the letters Œ and Æ are considered as pairs of two distinct letters: OE and AE. In
traditional German used in telephone directories, Ä, Ö, Ü, and ß are expanded into
AE, OE, UE, and ss and then sorted as an accent difference with the corresponding
letter pairs. In traditional Spanish, Ch is contracted into a single letter that sorts
between Cz and D.

The implementation of the collation algorithm first maps the characters onto col-
lation elements that have three numerical fields to express the three different levels
of comparison. Each character has constant numerical fields that are defined in a
collation element table. The mapping may require a preliminary expansion, as for æ
and œ into ae and oe or a contraction. The algorithm then forms for each string the
sequence of the collation elements of its characters. It creates a sort key by rearrang-
ing the elements of the string and concatenating the fields according to the levels:
the first fields of the string, then second fields, and third ones together. Finally, the
algorithm compares two sort keys using a binary comparison that applies to the first
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level, to the second level in case of equality, and finally to the third level if levels 1
and 2 show no differences.

3.4 Markup Languages

3.4.1 A Brief Background

Corpus annotation uses sets of labels, also called markup languages. Corpus markup
languages are comparable to those of standard word processors such as Microsoft
Word or LaTeX. They consist of tags inserted in the text that request, for instance,
to start a new paragraph, or to set a phrase in italics or in bold characters. Among
the most widespread markup languages, there are the Rich Text Format (RTF) from
Microsoft (2004) and the (La)TeX format designed by Donald Knuth (Knuth 1986)
(Table 3.10).

Table 3.10. Some formatting tags in RTF and LaTeX.

Text in italics New paragraph Accented letter é
RTF {\i text in italics} \par \’e9
LaTeX {\it text in italics} \cr \’{e}

While RTF and LaTeX are used by communities of million of persons, they
are not acknowledged as standards. The Standard Generalized Markup Language
(SGML) takes this place. SGML could have failed and remained a forgotten in-
ternational initiative. But the Internet and the World Wide Web, which use Hyper-
text Markup Language (HTML), a specific implementation of SGML, have ensured
its posterity. In the next sections, we introduce the Extensible Markup Language
(XML), which builds on the simplicity of HTML that has secured its success, and
extends it to handle any kind of data.

3.4.2 An Outline of XML

XML is a coding framework: a language to define ways of structuring documents.
XML can incorporate logical and presentation markups. Logical markups describe
the document structure and organization such as, for instance, the title, the sections,
and inside the sections, the paragraphs. Presentation markups describe the text ap-
pearance and enable users to set a sentence in italic or bold type, or to insert a page
break. Contrary to other markup languages, like HTML, XML does not have a pre-
defined set of tags. The programmer defines them together with their meaning.

XML separates the definition of structure instructions from the content – the data.
Structure instructions are described in a document type definition (DTD) that models
a class of XML documents. DTDs correspond to specific tagsets that enable users to
mark up texts. A DTD lists the legal tags and their relationships with other tags,
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for instance, to define what is a chapter and to verify that it contains a title. Among
coding schemes defined by DTDs, there are:

• the Extensible Hypertext Markup Language (XHTML), a clean, XML imple-
mentation of HTML that models the Internet Web pages

• the Text Encoding Initiative (TEI), which is used by some academic projects to
encode texts

A DTD is composed of three kinds of components defined in the XML jargon
as elements, attributes, and entities. Comments of DTDs and XML documents are
enclosed between <!-- and --> tags.

Elements. Elements are the logical units of an XML document. They are delim-
ited by surrounding tags. A start tag enclosed between angle brackets precedes the
element content, and an end tag terminates it. End tags are the same as start tags with
a / prefix. XML tags must be balanced, which means that an end tag must follow
each start tag. Here is a simple example of an XML document:

<!-- My first XML document -->
<book>
<title>Language Processing Cookbook</title>
<author>Pierre Cagné</author>
<!-- Image to show on the cover -->
<img></img>
<text>Here comes the text!</text>

</book>

where <book> and </book> are legal tags indicating respectively the start and
the end of the book, and <title> and </title> the beginning and the end of
the title. Empty elements, such as the image <img></img>, can be abridged as
<img/>. Unlike HTML, XML tags are case sensitive: <TITLE> and <title>
define different elements.

Attributes. An element can have attributes, i.e., a set of properties attached to the
element. Let us complement our book example so that the <title> element has an
alignment whose possible values are flush left, right, or center, and a character style
taken from underlined, bold, or italics. Let us also indicate where <img> finds the
image file. The DTD specifies the possible attributes of these elements and the value
list among which the actual attribute value will be selected. The actual attributes of
an element are supplied as name–value pairs in the element start tag.

Let us name the alignment and style attributes align and style and set them
in boldface characters and centered, and let us store the image file of the img element
in the src attribute. The markup in the XML document will look like:

<title align="center" style="bold">
Language Processing Cookbook

</title>
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<author>Pierre Cagné</author>
<img src="pierre.jpg"/>

Entities. Finally, entities correspond to data stored somewhere in a computer. They
can be accented characters, symbols, strings as well as text or image files. The pro-
grammer can declare or define variables referring to entities and use them subse-
quently. There are two different types of entities: parameter entities are used in
DTDs, and general entities or simply entities are used in XML document contents.
The two types of entities correspond to two different contexts. They are declared and
referred to differently.

An entity is referred to within an XML document by enclosing its name between
the start delimiter “&” and the end delimiter “;”, such as &EntityName;. The
XML parser will substitute the reference with the content of EntityName when it
is encountered.

There are five predefined entities recognized by XML. They correspond to char-
acters used by the XML standard, which cannot be used as is in a document (Ta-
ble 3.11). References to parameter entities use “%” and “;” as delimiters, such
as %ParameterEntityName;. Parameter entity references can only occur in
DTDs.

Table 3.11. The predefined entities of XML.

Symbol Entity encoding
< &lt; (less than)
> &gt; (greater than)
& &amp;
" &quot;
’ &apos;

3.4.3 Writing a DTD

The DTD specifies the formal structure of a document type. It enables an XML parser
to determine whether a document is valid. The DTD file contains the description of
all the legal elements, attributes, and entities.

Elements. The description of the elements is enclosed between the start and end
delimiters <!ELEMENT and >. It contains the element name and the content model
in terms of other elements or reserved keywords (Table 3.12). The content model
specifies how the elements appear, their order, and their number of occurrences (Ta-
ble 3.13). For example:

<!ELEMENT book (title, (author | editor)?, img,
chapter+)>

<!ELEMENT title (#PCDATA)>
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states that a book consists of a title, a possible author or editor, an image
img, and one or more chapters. The title consists of PCDATA, that is, only
text with no other embedded elements.

Table 3.12. Character types.

Character type Description
PCDATA Parsed character data. This data will be parsed and must only be text,

punctuation, and special characters; no embedded elements
ANY PCDATA or any DTD element
EMPTY No content – just a placeholder

Table 3.13. List separators and occurrence indicators.

List notation Description
, Elements must all appear and be ordered as listed
| Only one element must appear (exclusive or)
+ Compulsory element (one or more)
? Optional element (zero or one)

* Optional element (zero or more)

Attributes. Attributes are the possible properties of the elements. Attribute lists
are usually defined after the element they refer to. Their description is enclosed be-
tween the delimiters <!ATTLIST and >. An attribute list contains:

• the element the attribute is referring to
• the attribute name
• the kind of value the attribute may take: a predefined type (Table 3.14) or an

enumerated list of values between brackets and separated by vertical bars
• the default value between quotes or a predefined keyword (Table 3.15)

For example:

<!ATTLIST title
style (underlined | bold | italics) "bold"
align (left | center | right) "left">

<!ATTLIST author
style (underlined | bold | italics) #REQUIRED>

says that title has two attributes, style and align. The style attribute can
have three possible values and, if not specified in the XML document, the default
value will be bold. author has one style attribute that must be specified in the
document.
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Table 3.14. Some XML attribute types.

Attribute types Description
CDATA The string type: any character except <, >, &, ’, and "
ID An identifier of the element unique in the document; ID must begin with

a letter, an underscore, or a colon
IDREF A reference to an identifier
NMTOKEN String of letters, digits, periods, underscores, hyphens, and colons. It is

more restrictive than CDATA, for instance, spaces are not allowed

Table 3.15. Some default value keywords.

Predefined default values Description
#REQUIRED A value must be supplied
#FIXED The attribute value is constant and must be equal to the

default value
#IMPLIED If no value is supplied, the processing system will define

the value

Entities. Entities can be used to insert non-ASCII symbols or characters. Charac-
ter references consist of a Unicode number delimited by “&#x” and “;”, such as
&#xc9; for É and &#xA9; for ©.

Entities also enable users to define variables. Their declaration is enclosed be-
tween the delimiters <!ENTITY and >. It contains the entity name and the entity
content (possibly a sequence):

<!ENTITY myEntity "Introduction">

Parameter entities have a “%” sign before the entity name, as in

<!ENTITY % myEntity "<!ELEMENT textbody (para)+>">

A DTD Example. Let us now suppose that we want to publish cookbooks. We
define a document type, and we declare the rules that will form its DTD: a book will
consist of a title, a possible author or editor, an image, one or more chapters, and one
or more paragraphs in these chapters. Let us then suppose that the main title and the
chapter titles can be in bold, in italics, or underlined. Let us finally suppose that the
chapter titles can be numbered in Roman or Arabic notation. The DTD elements and
attributes are

<!ELEMENT book (title, (author | editor)?, img,
chapter+)>

<!ELEMENT title (#PCDATA)>
<!ATTLIST title style (u | b | i) "b">
<!ELEMENT author (#PCDATA)>
<!ATTLIST author style (u | b | i) "i">
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<!ELEMENT editor (#PCDATA)>
<!ATTLIST editor style (u | b | i) "i">
<!ELEMENT img EMPTY>
<!ATTLIST img src CDATA #REQUIRED>
<!ELEMENT chapter (subtitle, para+)>
<!ATTLIST chapter number ID #REQUIRED>
<!ATTLIST chapter numberStyle (Arabic | Roman)
"Roman">

<!ELEMENT subtitle (#PCDATA)>
<!ELEMENT para (#PCDATA)>

The name of the document type corresponds to the root element, here book,
which must be unique.

XML Schema. You probably noticed that the DTD syntax does not fit very well
with that of XML. This bothered some people, who tried to make it more compliant.
This gave birth to XML Schema, a document definition standard using the XML
style. As of today, DTD is still “king,” however, XML Schema is gaining popularity.
Specifications are available from the Web consortium at www.w3.org/XML/Schema.

3.4.4 Writing an XML Document

We shall now write a document conforming to the book document type. An XML
document begins with a header: a declaration describing the XML version and an
optional encoding. The default encoding is UTF-8.

<?xml version="1.0" encoding="UTF-8"?>

The document can contain any Unicode character. The encoding refers to how
the characters are stored in the file. This has no significance if you only use unac-
cented characters in the basic Latin set from position 0 to 127. If you type accented
characters, the editor will have to save them as UTF-8 codes. In the document above,
Cagné must be stored as 43 61 67 6E C3 A9, where é is corresponds to C3 A9.

If your text editor does not manage UTF-8, you will have to enter the accented
characters as entities with their Unicode number, for instance, &#xc9; for É, or
&#xE9; for é. Other encodings, such as Latin 1 (ISO-8859-1), Windows-1252, or
MacRoman would let you simply type the characters É or é from your keyboard
instead and save it with your machine’s default encoding.

Then, the document declares the DTD it uses. The DTD can be inside the XML
document and enclosed between the delimiters<!DOCTYPE [ and ]>, for instance:

<!DOCTYPE book [
<!ELEMENT book (title, (author | editor)?, img,
chapter+)>

<!ELEMENT title (#PCDATA)>
...
]>
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Or the DTD can be external to the document, for instance, in a file called
book_definition.dtd. In this case, DOCTYPE indicates its location on the
computer using the keyword SYSTEM:

<!DOCTYPE book SYSTEM
"/home/pierre/xml/book_definition.dtd">

Now, we can write the document content. Let us use the XML tags to sketch a
very short book. It could look like this:

<book>
<title style="i">Language Processing Cookbook
</title>
<author style="b">Pierre Cagné</author>
<img src="pierre.jpg"/>
<chapter number="c1">

<subtitle>Introduction</subtitle>
<para>Let&apos;s start doing simple things:
Collect texts.

</para>
<para>First, choose an author you like.
</para>

</chapter>
</book>

Once, we have written an XML document, we must check that is well formed,
which means that it has no syntax errors: the brackets are balanced, the encoding is
correct, etc. We must also validate it, i.e., check that it conforms to the DTD. This
can be done with a variety of parsers available from the Internet. An easy way to do it
is to use Microsoft Explorer (or any modern Web browser), which has an embedded
XML parser.

3.4.5 Namespaces

In our examples, we used element names that can be part of other DTDs. The string
title, for instance, is used by XHTML. The XML namespaces is a device to avoid
collisions. It is a naming scheme that enables us to define groups of elements and
attributes in the same document and prevent name conflicts.

We declare a namespace using the predefinedxmlns attribute as <my-element
xmlns:prefix="URI">. It starts a namespace inside my-element and its de-
scendants, where prefix defines a group of names. Names members of this names-
pace are preceded by the prefix, as in prefix:title.URI has the syntax of a Web
address. However, it is just a unique name; it is never accessed.

Declaring two namespaces in book, we can reuse title for different purposes:

<book
xmlns:pierre="http://www.cs.lth.se/~pierre"
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xmlns:raymond="http://www.grandecuisine.com">

<pierre:title style="i">Language Processing
Cookbook

</pierre:title>

<raymond:title style="i">A French Cookbook
</raymond:title>

</book>

3.5 Codes and Information Theory

Information theory underlies the design of codes. Claude Shannon probably started
the field with a seminal article (1948), in which he defined a measure of informa-
tion: the entropy. In this section, we outline essential information theory concepts:
entropy, optimal coding, cross entropy, and perplexity. Entropy and perplexity are
used as metrics in many areas of language processing.

3.5.1 Entropy

Information theory models a text as a sequence of symbols. Let x1, x2, ..., xN be a
discrete set of N symbols representing the characters. The information content of
a symbol is defined as I(xi) = − log2 p(xi) = log2

1
p(xi)

, and it is measured in
bits. When the symbols have equal probabilities, they are said to be equiprobable
and p(x1) = p(x2) = ... = p(xN ) = 1

N . The information content of xi is then
I(xi) = log2 N .

The information content corresponds to the number of bits that is necessary to
encode the set of symbols. The information content of the alphabet, assuming that it
consists of 26 unaccented equiprobable characters and the space, is log2(26 + 1) =
4.75, which means that five bits are necessary to encode it. If we add 16 accented
characters, the uppercase letters, 11 punctuation signs, [, . ; : ? ! " – ( ) ’], and the
space, we need (26 + 16) × 2 + 12 = 96 symbols. Their information content is
log2 96 = 6.58, and they can be encoded on seven bits.

The information content assumes that the symbols have an equal probability.
This is rarely the case in reality. Therefore this measure can be improved using the
concept of entropy, the average information content, which is defined as:

H(X) = −
∑
x∈X

p(x) log2 p(x),

where X is a random variable over a discrete set of variables, p(x) = P (X =
x), x ∈ X , with the convention 0 log2 0 = 0. When the symbols are equiprobable,
H(X) = log2 N . This corresponds also to the upper bound on the entropy value,
and for any random variable, we have the inequality H(X) ≤ log2 N .
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To evaluate the entropy of printed French, we computed the frequency of the
printable French characters in Gustave Flaubert’s novel Salammbô. Table 3.16 shows
the frequency of 26 unaccented letters, the 16 accented or specific letters, and the
blanks (spaces).

Table 3.16. Letter frequencies in the French novel Salammbô by Gustave Flaubert. The text
has been normalized in uppercase letters. The table does not show the frequencies of the
punctuation signs or digits.

Letter Freq Letter Freq Letter Freq Letter Freq
A 42471 B 5762 C 14226 D 18912
E 71178 F 4996 G 5151 H 5315
I 33669 J 1220 K 92 L 30976
M 13101 N 32919 O 22629 P 13178
Q 3965 R 33577 S 46766 T 35110
U 29276 V 6924 W 1 X 2213
Y 1232 Z 413 À 1893 Â 607
Æ 9 Ç 452 È 2002 É 7728
Ê 898 Ë 6 Î 277 Ï 66
Ô 398 Œ 121 Ù 179 Û 213
Ü 0 Ÿ 0 Blanks 101,555 Total: 591,676

The entropy of the text restricted to the characters in Table 3.16 is defined as:

H(X) = − ∑
x∈X

p(x) log2 p(x).

= −p(A) log2 p(A) − p(B) log2 p(B) − ...

−p(Z) log2 p(Z) − p(À) log2 p(À) − ...

−p(Ÿ ) log2 p(Ÿ ) − p(blanks) log2 p(blanks).

If we distinguish between upper- and lowercase letters and if we include the punc-
tuation signs, the digits, and all the other printable characters – ASCII ≥ 32 – the
entropy of Gustave Flaubert’s Salammbô in French is H(X) = 4.39.

3.5.2 Huffman Encoding

The information content of the French character set is less than the seven bits re-
quired by equiprobable symbols. Although it gives no cue on an encoding algorithm,
it indicates that a more efficient code is theoretically possible. This is what we ex-
amine now with Huffman encoding, which is a general and simple method to build
such a code.

Huffman encoding uses variable-length code units. Let us simplify the problem
and use only the eight symbols A, B, C, D, E, F , G, and H with the count frequen-
cies in Table 3.17.
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Table 3.17. Frequency counts of the symbols.

A B C D E F G H
Freq 42,471 5762 14,226 18,912 71,178 4996 5151 5315
Prob 0.25 0.03 0.08 0.11 0.42 0.03 0.03 0.03

Table 3.18. A possible encoding of the symbols on 3 bits.

A B C D E F G H
000 001 010 011 100 101 110 111

The information content of equiprobable symbols is log2 8 = 3 bits. Table 3.18
shows a possible code with constant-length units.

The idea of Huffman encoding is to encode frequent symbols using short code
values and rare ones using longer units. This was also the idea of the Morse code,
which assigns a single signal to letter E: ., and four signals to letter X : -..-.

This first step builds a Huffman tree using the frequency counts. The symbols
and their frequencies are the leaves of the tree. We grow the tree recursively from
the leaves to the root. We merge the two symbols with the lowest frequencies into a
new node that we annotate with the sum of their frequencies. In Fig. 3.1, this new
node corresponds to the letters F and G with a combined frequency of 4996 + 5151
= 10,147 (Fig. 3.2). The second iteration merges B and H (Fig. 3.3); the third one,
(F, G) and (B, H) (Fig. 3.4), and so on (Figs. 3.5–3.8).

A B C D

42471 5762 14226 18912

E F G H

71178 4996 5151 5315 

Fig. 3.1. The symbols and their frequencies.

A B C D

42471 5762 14226 18912

E F G H

71178 4996 5151 5315 

10147

Fig. 3.2. Merging the symbols with the lowest frequencies.

The second step of the algorithm generates the Huffman code by assigning a 0 to
the left branches and a 1 to the right branches (Table 3.19).

The average number of bits is the weighted length of a symbol. If we compute it
for the data in Table 3.17, it corresponds to:
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A BC D

42471 5762 14226 18912

E F G H

71178 4996 5151 5315 

10147 11077

Fig. 3.3. The second iteration.

A BC D

42471 5762 14226 18912

E F G H

71178 4996 5151 5315 

10147 11077

21224

Fig. 3.4. The third iteration.

A BC D

42471 5762 14226 18912

E F G H

71178 4996 5151 5315 

10147 11077

21224

33138

Fig. 3.5. The fourth iteration.

A B

C D

42471 5762 

14226 18912

E F G H

71178 4996 5151 5315 

10147 11077

2122433138

54462

Fig. 3.6. The fifth iteration.

Table 3.19. The Huffman code.

A B C D E F G H
10 11110 1100 1101 0 11100 11101 11111
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A

B

C D

42471

5762 

14226 18912

E F G H

71178 4996 5151 5315 

10147 11077

2122433138

54462

96933

Fig. 3.7. The sixth iteration.

A

B

C D

42471

5762 

14226 18912

E

F G H

71178

4996 5151 5315 

10147 11077

2122433138

54462

96933

Fig. 3.8. The final Huffman tree.

0.25 × 2 bit + 0.03 × 5 bit + 0.08 × 4 bit + 0.11 × 4 bit + 0.42 × 1 bit
+0.03 × 5 bit + 0.03 × 5 bit + 0.03 × 5 bit = 2.35

Although the Huffman code reduces the average number of bits, it does not reach the
entropy limit, which is, in our example, 2.27.

3.5.3 Cross Entropy

Let us now compare the letter frequencies between two parts of Salammbô, then be-
tween Salammbô and another text in French or in English. The symbol probabilities
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will certainly be different. Intuitively, the distributions of two parts of the same novel
are likely to be close, further apart between Salammbô and another French text from
the 21st century, and even further apart with a text in English. This is the idea of
cross entropy, which compares two probability distributions.

In the cross entropy formula, one distribution is referred to as the model. It cor-
responds to data on which the probabilities have been trained. Let us name it m with
the distribution m(x1), m(x2), ..., m(xN ). The other distribution, p, corresponds to
the test data: p(x1), p(x2), ..., p(xN ). The cross entropy of m on p is defined as:

H(p, m) = −
∑
x∈X

p(x) log2 m(x).

Cross entropy quantifies the average surprise of the distribution when exposed to the
model. We have the inequality H(p) ≤ H(p, m) for any other distribution m with
equality if and only if m(xi) = p(xi) for all i. The difference H(p, m) − H(p) is
a measure of the relevance of the model: the closer the cross entropy, the better the
model.

To see how the probability distribution of Flaubert’s novel could fare on other
texts, we trained a model on the first fourteen chapters of Salammbô, and we applied
it to the last chapter of Salammbô (Chap. 15), to Victor Hugo’s Notre Dame de Paris,
both in French, and to Nineteen Eighty-Four by George Orwell in English. The data
in Table 3.20 conform to our intuition. They show that the first chapters of Salammbô
are a better model of the last chapter of Salammbô than of Notre Dame de Paris and
even better than of Nineteen Eighty-Four.

Table 3.20. The entropy is measured on the file itself and the cross entropy is measured with
Chapters 1–14 of Gustave Flaubert’s Salammbô taken as the model.

Entropy Cross entropy Difference
Salammbô, chapters 1-14, training set 4.39481 4.39481 0.0
Salammbô, chapter 15, test set 4.34937 4.36074 0.01137
Notre Dame de Paris, test set 4.43696 4.45507 0.01811
Nineteen Eighty-Four, test set 4.35922 4.82012 0.46090

3.5.4 Perplexity and Cross Perplexity

Perplexity is an alternate measure of information that is mainly used by the speech
processing community. Perplexity is simply defined as 2H(X). The cross perplexity
is defined similarly as 2H(p,m).

Although perplexity does not bring anything new to entropy, it presents the infor-
mation differently. Perplexity reflects the averaged number of choices of a random
variable. It is equivalent to the size of an imaginary set of equiprobable symbols,
which is probably easier to understand.
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Table 3.21 shows the perplexity and cross perplexity of the same texts measured
with Chaps. 1–14 of Gustave Flaubert’s Salammbô taken as the model.

Table 3.21. The perplexity and cross perplexity of texts measured with Chapters 1–14 of
Gustave Flaubert’s Salammbô taken as the model.

Perplexity Cross perplexity
Salammbô, chapters 1-14, training set 21.04 21.04
Salammbô, chapter 15, test set 20.38 20.54
Notre Dame de Paris, test set 21.66 21.93
Nineteen Eighty-Four, test set 20.52 28.25

3.6 Entropy and Decision Trees

Decision trees are useful devices to classify objects into a set of classes. They have
many applications in language processing. In this section, we will describe what they
are and see how entropy can help us learn – or induce – automatically decision trees
from a set of data. The algorithm, which resembles a reverse Huffman encoding, is
one of the simplest machine-learning techniques.

3.6.1 Decision Trees

Decision trees consider objects defined by a set of attributes – also called features –
where the nodes of the trees are conditions on the features. An object is presented at
the root of the tree, and its features are tested by the tree nodes from the root down
to a leaf. The leaves return an output, which can be the description of an object’s
membership or probabilities to be the member of a class.

Quinlan (1986) gives an example of a set where objects are members of two
classes N and P (Table 3.22) and a decision tree that correctly classifies these objects
(Fig. 3.9).

3.6.2 Inducing Decision Trees Automatically

It is possible to design many trees that classify the objects in Table 3.22 successfully.
The tree in Fig. 3.9 is interesting because it is efficient: a decision can be made with
a minimal number of tests.

An efficient decision tree can be induced from a set of examples, members of
mutually exclusive classes using an entropy measure. We will describe the induc-
tion using two classes of p positive and n negative examples, although this can be
generalized to any number of classes. Each example is defined by a finite number of
attributes. Each node in the decision tree corresponds to an attribute that has as many
branches as the attribute has possible values.
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Table 3.22. A set of object members of two classes: N and P . After Quinlan (1986).

Object Attributes Class
Outlook Temperature Humidity Windy

1 Sunny Hot High False N
2 Sunny Hot High True N
3 Overcast Hot High False P
4 Rain Mild High False P
5 Rain Cool Normal False P
6 Rain Cool Normal True N
7 Overcast Cool Normal True P
8 Sunny Mild High False N
9 Sunny Cool Normal False P
10 Rain Mild Normal False P
11 Sunny Mild Normal True P
12 Overcast Mild High True P
13 Overcast Hot Normal False P
14 Rain Mild High True N

outlook

humidity P windy

N P N P

rainsunny overcast

high normal true false

Fig. 3.9. A decision tree classifying the objects in Table 3.22. After Quinlan (1986).

At the root of the tree, the condition must be the most discriminating, that is, have
branches gathering most positive examples while others gather negative examples.
The ID3 (Quinlan 1986) algorithm uses the entropy to select the best attribute to
be the root of the tree and recursively the next attributes of the resulting nodes. ID3
defines the information gain as the difference of entropy before and after the decision.
It measures the separating power of an attribute: the more the gain, the better the
attribute.

As defined previously, the entropy of a two-class set of p positive and n negative
examples is:

I(p, n) = − p

p + n
log2

p

p + n
− n

p + n
log2

n

p + n
.
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If attribute A is the root of the tree and has v possible values {A1, A2, ..., Av},
there will be v resulting nodes. Each node corresponds to one value of A and contains
pi positive and ni negative examples. Its entropy is I(pi, ni).

The weighted average of all the nodes below A is:

v∑
i=1

pi + ni

p + n
I(

pi

pi + ni
,

ni

pi + ni
).

The information gain is defined as Ibefore − Iafter. For the tree in Fig. 3.9, let
us compute the information gain of attribute outlook.

Ibefore(p, n) = − 9

14
log2

9

14
− 5

14
log2

5

14
= 0.940.

Outlook has three values: sunny, overcast, and rain. Their corresponding entropies
are:

I(p1, n1) = − 2
5 log2

2
5 − 3

5 log2
3
5 = 0.971.

I(p2, n2) = 0.
I(p3, n3) = − 3

5 log2
3
5 − 2

5 log2
2
5 = 0.971.

Thus

Iafter(p, n) =
5

14
I(p1, n1) +

4

14
I(p21, n2) +

5

14
I(p3, n3) = 0.694.

The gain is 0.940 – 0.694 = 0.246, which is the highest among the possible attributes.
The algorithm to build the decision tree is simple. The attribute that has the high-

est information gain is selected to be the root of the tree, and this process is repeated
recursively for each node of the tree.

3.7 Further Reading

Many operating systems such as Windows, Mac OS, and Unix, or programming lan-
guages such as Java have adopted Unicode and take the language parameter of a
computer into account. Basic lexical methods such as date and currency formatting,
word ordering, and indexing are now supported at the operating system level. Oper-
ating systems or programming languages offer toolboxes and routines that you can
use in applications.

The Unicode Consortium publishes books and technical reports that describe the
various aspects of the standard. The Unicode Standard, Version 4.0 (2003) is the most
comprehensive document while Davis and Whistler (2002) describe in detail the
Unicode collation algorithm. Both documents are available in electronic format from
the Unicode Web site: http://www.unicode.org. IBM implemented a large library of
Unicode components in Java and C++, which are available as open-source software
(http://www.ibm.com/software/globalization/icu).

SGML started from a US DARPA initiative. Goldfarb (1990) is a difficult-to-
read reference to this language by its designer. Derived markup standards such as
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HTML and XML are continuously evolving. Their specifications are available from
the World Wide Web consortium (http://www.w3.org). Finally, a good reference on
XML is Learning XML (Ray 2003).

Information theory has been covered by many books, many of them requiring a
good mathematical background. The text by Manning and Schütze (Chap. 2, 1999)
provides a short and readable introduction oriented toward natural language process-
ing.

We will use ID3 as a machine-learning algorithm in other chapters of this book.
ID3 is one of the oldest and easiest-to-understand algorithms. There are many other
machine-learning techniques that can use the same type of input data: a set of exam-
ples defined by features and members of a finite set of classes. As is the case for ID3,
they automatically train classifiers from the annotated examples. Classifiers can then
be reused for unannotated data. Support vector machines (Boser et al. 1992), which
rely on a complex mathematic formulation, are very efficient devices. They enjoy
a growing popularity in the language processing community. Their presentation is
beyond the scope of this book. Fortunately, there are many free implementations of
them. Schlkopf and Smola (2002) is a good reference on them.

Exercises

3.1. Implement UTF-8 that transforms a sequence of code points in a sequence of
octets in Prolog.

3.2. Implement a word collation algorithm for English, French, German, or Swedish.

3.3. Modify the DTD in Sect. 3.4.4 so that the cookbook consists of meals instead of
chapters, and each meal has an ingredient and a recipe section.

3.4. Modify the DTD in Sect. 3.4.4 to declare the general and parameter entities:

<!ENTITY myEntity "Introduction">
<!ENTITY %myEntity "<!ELEMENT textbody (para)+>">

Use these entities in the DTD and the document.

3.5. Write a Prolog program that removes the tags from a text encoded in HTML.

3.6. Write a Prolog program that process a text encoded in HTML: it retains headers
(Hn tags) and discards the rest.

3.7. Implement the ID3 algorithm in Prolog or Perl.
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Counting Words

4.1 Counting Words and Word Sequences

We saw in Chap. 2 that words have specific contexts of use. Pairs of words like
strong and tea or powerful and computer are not random associations but the result
of a preference. A native speaker will use them naturally, while a learner will have to
learn them from books – dictionaries – where they are explicitly listed. Similarly, the
words rider and writer sound much alike in American English, but they are likely
to occur with different surrounding words. Hence, hearing an ambiguous phonetic
sequence, a listener will discard the improbable rider of books or writer of horses
and prefer writer of books or rider of horses (Church and Mercer 1993).

In lexicography, extracting recurrent pairs of words – collocations – is critical to
finding the possible contexts of a word and citing real examples of its use. In speech
recognition, the statistical estimate of a word sequence – also called a language
model – is a key part of the recognition process. The language model component
of a speech recognition system enables the system to predict the next word given a
sequence of previous words: the writer of books, novels, poetry, etc., rather than of
the writer of hooks, nobles, poultry.

Knowing the frequency of words and sequences of words is crucial in many fields
of language processing. In addition to speech recognition and lexicography, they
include parsing, semantic interpretation, and translation. In this chapter, we introduce
techniques to obtain word frequencies from a corpus and to build language models.
We also describe a set of related concepts that are essential to understand them.

4.2 Words and Tokens

4.2.1 What Is a Word?

The definition of what a word is, although apparently obvious, is in fact surprisingly
difficult. A naïve description could be a sequence of alphabetic characters delimited
by two white spaces. This is an approximation. In addition to white spaces, words can
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end with a comma, a question mark, a period, etc. Words can also include dashes and
apostrophes that, depending on the context, have a different meaning. They may vary
according to the language. Compare the French word aujourd’hui ‘today’, which
forms a single word, and l’article ‘the article’, where the sequence of an article and
a noun must be separated before any further processing.

In corpus processing, text elements are generally called tokens. Tokens include
words but also punctuation, numbers, abbreviations, or any other similar type of
string. Tokens may mix characters and symbols as:

• numbers: 9,812.345 (English and French from the 18th–19th century), 9 812,345
(current French and German) 9.812,345 (French from the 19th–early 20th cen-
tury)

• dates: 28/02/1996 (French and British English), 2002/11/20 (Swedish)
• abbreviations and acronyms: km/h, m.p.h., S.N.C.F
• nomenclatures: A1-B45, /home/pierre/book.tex
• destinations: Paris–New York, Las Palmas–Stockholm, Rio de Janeiro–Frankfurt

am Main
• telephone numbers: (0046) 46 222 96 40
• tables
• formulas: E = mc2

The definition of what is a sentence is also tricky. As in the case for words, a
naïve definition would be a sequence of words ended by a period. Unfortunately,
periods are also ambiguous. They occur in numbers and terminate abbreviations, as
in etc. or Mr., which makes sentence isolation equally complex. In the next sections,
we examine techniques to break a text into words and sentences and to count the
words.

4.2.2 Breaking a Text into Words: Tokenization

Tokenization breaks a character stream, that is, a text file or a keyboard input, into
tokens – separated words – and sentences. In Prolog, it results into a list of atoms.
For this paragraph, such a list looks like:

[[’Tokenization’, breaks, a, character, stream, (,),
that, is, (,), a, text, file, or, a, keyboard, input,
(,), into, tokens, -, separated, words, -, and,
sentences, ’.’], [’In’, ’Prolog’, it, results, into,
a, list, of, atoms, ’.’], [’For’, this, paragraph,
(,), such, a, list, looks, like, :]]

Tokenization is a necessary step to morphological and syntactic parsing since these
analyses consider words or sentences most of the time. A tokenizer can also remove
formatting instructions, such as XML tags, if any.

This section introduces tokenization techniques. For sake of simplicity, we con-
sider that words are contiguous segments of alphanumeric characters and that other
symbols mark a separation. We can then define a tokenizer by a grammar:
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• A token is a sequence of alphabetic characters or digits.
• Other characters mark the token termination and consist of carriage returns,

blanks, tabulations, punctuation signs, or other ASCII symbols or commands.
• A sentence is a sequence of tokens ended by a period, a colon, a semicolon, an

exclamation point, or a question mark.

We provide an implementation of tokenization using Prolog and Perl. Perl is
generally faster and is well suited to process large quantities of text.

4.3 Tokenizing Texts

4.3.1 Tokenizing Texts in Prolog

A Basic Program. The tokenization program tokenize/2 takes a list of char-
acter codes as input and returns a list of tokens. The predicate char_typ/2 deter-
mines the type of a character code: alphanumerical, blank, or other. It uses the Latin 1
character set (charset) plus some Windows extensions. The first tokenize/2 rule
corresponds to the termination condition. The second tokenize/2 rule tests the
type of the head of the list. It skips the blanks. When it reaches an alphanumerical
character in the third rule, it calls make_word/5, which builds a word out of next
letters or digits in the list. When tokenize/2 encounters another symbol in the
fourth rule, it makes a single token out of it.

You can use the read_file/2 predicate from Appendix A, “An Introduction
to Prolog,” to read the character codes from a file.

% tokenize(+CharCodes, -Tokens)
% breaks a list of character codes into
% a list of tokens.
tokenize([], []).
tokenize([CharCode | RestCodes], Tokens) :-
char_typ(CharCode, blank),
!,
tokenize(RestCodes, Tokens).

tokenize([CharCode | CharCodes], [Word | Tokens]) :-
char_typ(CharCode, alnum),
!,
make_word(CharCode, alnum, CharCodes, WordCodes,

RestCodes),
name(Word, WordCodes),
tokenize(RestCodes, Tokens).

tokenize([CharCode | CharCodes], [Char | Tokens]) :-
!,
name(Char, [CharCode]),
tokenize(CharCodes, Tokens).
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% make_word(+CharCode, +Type, +CharCodes, -WordCodes,
% -RestCodes)
make_word(CharCode1, alnum, [CharCode2 | CharCodes],

[CharCode1 | WordCodes], RestCodes) :-
char_typ(CharCode2, alnum),
!,
make_word(CharCode2, alnum, CharCodes, WordCodes,

RestCodes).
make_word(CharCode, alnum, RestCodes, [CharCode] ,

RestCodes).

% char_typ(+CharCode, -Type)
% Returns the type of CharCode.
% There are several cases:
% Blanks
char_typ(CharCode, blank) :-
CharCode =< 32,
!.

% Lower-case letters without accent
char_typ(CharCode, alnum) :-
97 =< CharCode,
CharCode =< 122,
!.

% Upper-case letters without accent
char_typ(CharCode, alnum) :-
65 =< CharCode,
CharCode =< 90,
!.

% Accented characters.
% The values 215 and 247 correspond to
% the multiplication and division symbols: Œ œ
char_typ(CharCode, alnum) :-
192 =< CharCode,
CharCode =< 255,
CharCode =\= 215,
CharCode =\= 247,
!.

% Digits
char_typ(CharCode, alnum) :-
48 =< CharCode,
CharCode =< 57,
!.

% The oe, OE, and Y" letters
char_typ(CharCode, alnum) :-
(CharCode =:= 140 ; CharCode =:= 156 ;
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CharCode =:= 159),
!.

Improving the Tokenizer. The program we have written may work badly for some
strings. For instance, it does not process the point of decimal numbers such as 3.14,
and inserts a sentence end between 3 and 14. This can be fixed using two-pass pro-
cessing. The first pass recognizes decimal numbers with an appropriate grammar and
annotates them. The second one runs the tokenizer on the resulting text.

We can generalize this strategy to improve the tokenizer with specific grammars
recognizing numbers, dates, and percentages that will be run as as many different
processing stages. However, there will remain cases where the program fails, notably
with abbreviations, which often have fixed and variable parts as in Dr. Watson. Dr. is a
common fixed title, and Watson a possible name. We can bring a second improvement
to the tokenizer using rules and a lexicon of common abbreviations: Mr., Sen., Rep.,
Oct., Fig., pp., etc. Rules may recognize likely abbreviations by testing whether the
period is followed either by a comma, a semicolon, a question mark or a lowercase
letter. The tokenizer can test words ending with a period using the rules or the lexicon
to decide whether they are a sentence end or not (Grefenstette and Tapanainen 1994).
Mikheev (2002) describes a more efficient method that learns tokenization rules from
the set of ambiguous tokens distributed in a document.

4.3.2 Tokenizing Texts in Perl

Perl offers a simple and very fast way to tokenize files into words using the tr
operator. We will consider that contiguous sequences of characters, including the
dash and the quote, are words, and we will isolate them on a single line. We will
isolate the punctuation symbols on a single line as well.

The Perl program formulates this a little differently:

• If the character is not a letter or punctuation sign, then replace it by a new line.
Note that the dash character in tr as well as in character classes means an inter-
val and that we have to quote it to process it in a text.

• If it is a punctuation sign, then insert it between two new lines.
• Finally, reduce contiguous sequences of new lines to a single occurrence.

$text = <>;
while ($line = <>) {
$text .= $line;

}
$text =~ tr/a-zåàâäæçéèêëîïôöœùûüßA-
ZÅÀÂÄÆÇÉÈÊËÎÏÔÖŒÙÛÜ’()\-,.?!:;/\n/cs;
$text =~ s/([,.?!:;()’\-])/\n$1\n/g;
$text =~ s/\n+/\n/g;
print $text;
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4.4 N -grams

4.4.1 Some Definitions

The first step of lexical statistics consists in extracting the list of word types or
types, i.e., the distinct words, from a corpus, along with their frequencies. Within
the context of lexical statistics, word types are opposed to word tokens, the sequence
of running words of the corpus. The excerpt from George Orwell’s Nineteen Eighty-
Four:

War is peace
Freedom is slavery
Ignorance is strength

has nine tokens and seven types. The type-to-token ratio is often used as an elemen-
tary measure of a text’s density.

Collocations and language models also use the frequency of pairs of adjacent
words: bigrams, for example how many of the there are in this text; of word triplets:
trigrams; and more generally of fixed sequences of n words: n-grams. In lexical
statistics, single words are called unigrams.

Jelinek (1985) exemplified corpus statistics and trigrams with the phrase

We need to resolve all the important issues

selected from a 90-million-word corpus of IBM office correspondences. Table 4.1
shows each word of this phrase, its rank in the corpus, and other words ranking before
it according to a linear combination of trigram, bigram, and unigram probabilities.
In this corpus, We is the ninth most probable word to begin a sentence. More likely
words are The, This, etc. Following We, need is the seventh most probable word.
More likely bigrams are We are, We will, We the, We would. . . . Knowing that words
We need have been written, to is the most likely word to come after them. Similarly,
the is the most probable word to follow all of.

Table 4.1. Trigram generation. After Jelinek (1985).

Word Rank More likely alternatives
We 9 The This One Two A Three Please In
need 7 are will the would also do
to 1
resolve 85 have know do. . .
all 9 the this these problems. . .
of 2 the
the 1
important 657 document question first. . .
issues 14 thing point to. . .
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4.4.2 Counting Unigrams in Prolog

Counting unigrams in a corpus consists simply in tokenizing it, sorting the words,
and counting the number of times a type occurs in the corpus. We will not use the
Prolog predefined sort/2 predicate because it removes the duplicates. Instead, we
can use a predicate implementing the quicksort algorithm or msort/2 in some Pro-
logs.

The predicate count_duplicates/2 counts the duplicates. It takes the or-
dered list of words as an input and returns a list of pairs with the frequency of each
word [N, Word] in the output list:

count_duplicates(OrderedList, CountedList) :-
count_duplicates(OrderedList, 1, [],

CountedListRev),
reverse(CountedListRev, CountedList).

count_duplicates([X, X | Ordered], N, Counting,
Counted) :-

N1 is N + 1,
!,
count_duplicates([X | Ordered], N1, Counting,

Counted).
count_duplicates([X | Ordered], N, Counting,

Counted) :-
!,
count_duplicates(Ordered, 1, [[N, X] | Counting],

Counted).
count_duplicates([], _, L, L).

We get the unigrams with their counts with

?- read_file(myFile, CharacterList),
tokens(TokenList, CharacterList, []),
quicksort(TokenList, OrderedTokens),
count_duplicates(OrderedTokens, UnigramList).

4.4.3 Counting Unigrams with Perl

Counting unigrams is straightforward and very fast with Perl. We can obtain them
with the following algorithm:

1. Tokenize the text file, putting one word per line with tr.
2. Count the words using a hash table.
3. Possibly, sort the words according to their alphabetical order and numerical rank-

ing.
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The tokenizing part is the same as in the previous section, and we use the split
function to assign each word of the text to the elements of an array. As we saw
in Chap. 2, split takes two arguments: a regular expression, which describes a
delimiter, and a string, which is split everywhere the delimiter matches. The resulting
fragments are assigned sequentially to an array. Let $text be a big string containing
the whole text with one word per line. The instruction:

@words = split(/\n/, $text);

assigns the first line and hence the first word to $words[0], the second word to
$words[1], and so on. A useful generalization of this instruction is

@words = split(/\s+/, $text);

which splits the text at each sequence of white space characters.
Then, we use a hash table or associative array. Instead of being indexed by con-

secutive numbers, as in classical arrays, hash tables are indexed by strings. The next
three lines

$wordcount{"a"} = 21;
$wordcount{"And"} = 10;
$wordcount{"the"} = 18;

create a hash table $wordcount with three indices called the keys: a, And, the,
whose values are 21, 10, and 18. Hash keys can be numbers as well as strings. We
refer to the whole array using the notation %wordcount. The instruction keys
return the keys of the array as in

keys %wordcount

A hash entry is created when a value is assigned to it. Its existence can be tested
using the exists Boolean function.

The counting program scans the @words array and increments the frequency of
the words as they occur. We finally introduce two new instructions and functions.
The instruction foreach item (list) iterates over the items of an array, and
sort(array) returns a sorted array.

$text = <>;
while ($line = <>) {
$text .= $line;

}
$text =~ tr/a-zåàâäæçéèêëîïôöœùûüßA-
ZÅÀÂÄÆÇÉÈÊËÎÏÔÖŒÙÛÜ’()\-,.?!:;/\n/cs;
$text =~ s/([,.?!:;()’\-])/\n$1\n/g;
$text =~ s/\n+/\n/g;
@words = split(/\n/, $text);
for ($i = 0; $i <= $#words; $i++) {
if (!exists($frequency{$words[$i]})) {
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$frequency{$words[$i]} = 1;
} else {

$frequency{$words[$i]}++;
}

}
foreach $word (sort keys %frequency){
print "$frequency{$word} $word\n";

}

4.4.4 Counting Bigrams with Perl

We count bigrams and n-grams just as we did with unigrams. The only difference is
that we create an array of bigrams by concatenating the adjacent words. The follow-
ing Perl program enables us to obtain them:

$text = <>;
while ($line = <>) {
$text .= $line;

}
$text =~ tr/a-zåàâäæçéèêëîïôöœùûüßA-
ZÅÀÂÄÆÇÉÈÊËÎÏÔÖŒÙÛÜ’()\-,.?!:;/\n/cs;
$text =~ s/([,.?!:;()’\-])/\n$1\n/g;
$text =~ s/\n+/\n/g;
@words = split(/\n/, $text);
for ($i = 0; $i < $#words; $i++) {
$bigrams[$i] = $words[$i] . " " . $words[$i + 1];

}
for ($i = 0; $i < $#words; $i++) {
if (!exists($frequency_bigrams{$bigrams[$i]})) {

$frequency_bigrams{$bigrams[$i]} = 1;
} else {

$frequency_bigrams{$bigrams[$i]}++;
}

}
foreach $bigram (sort keys %frequency_bigrams){
print "$frequency_bigrams{$bigram} $bigram \n";

}

4.5 Probabilistic Models of a Word Sequence

4.5.1 The Maximum Likelihood Estimation

We observed in Table 4.1 that some word sequences are more likely than others.
Using a statistical model, we can quantify these observations. The model will enable
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us to assign a probability to a word sequence as well as to predict the next word to
follow the sequence.

Let S = w1, w2, ..., wi, ..., wn be a word sequence. Given a training corpus, an
intuitive estimate of the probability of the sequence, P (S), is the relative frequency
of the string w1, w2, ..., wi, ..., wn in the corpus. This estimate is called the maximum
likelihood estimate (MLE):

PMLE(S) =
C(w1, ..., wn)

N
,

where C(w1, ..., wn) is the frequency or count of the string w1, w2, ..., wi, ..., wn in
the corpus, and N is the total number of strings of length n.

Most of the time, however, it is impossible to obtain this estimate. Even when
corpora reach billions of words, they have a limited size, and it is unlikely that we
can always find the exact sequence we are searching. We can try to simplify the
computation and decompose P (S) a step further as:

P (S) = P (w1, ..., wn),
= P (w1)P (w2|w1)P (w3|w1, w2)P (wn|w1, ..., wn−1),

=
n∏

i=1

P (wi|w1, ..., wi−1).

The probability P (It was a bright cold day in April) from Nineteen Eighty-
Four corresponds then to the probability of having It to begin the sentence, then was
knowing that we have It before, then a knowing that we have It was before, and so
on until the end of the sentence. It yields the product of conditional probabilities:

P (S) = P (It) × P (was|It) × P (a|It, was) × P (bright|It, was, a) × ...
×P (April|It, was, a, bright, ..., in).

To estimate P (S), we need to know unigram, bigram, trigram, so far, so good, but
also 4-gram, 5-gram, and even 8-gram statistics. Of course, no corpus is big enough
to produce them. A practical solution is then to limit the n-gram length to 2 or 3, and
thus to approximate them to bigrams:

P (wi|w1, w2, ..., wi−1) ≈ P (wi|wi−1),

or trigrams:
P (wi|w1, w2, ..., wi−1) ≈ P (wi|wi−2, wi−1).

Using a trigram language model, P (S) is approximated as:

P (S) ≈ P (It) × P (was|It) × P (a|It, was) × P (bright|was, a) × ...
×P (April|day, in).

Using a bigram grammar, the general case of a sentence probability is:

P (S) ≈ P (w1)

n∏
i=2

P (wi|wi−1),
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with the estimate

PMLE(wi|wi−1) =
C(wi−1, wi)∑
w

C(wi−1, w)
=

C(wi−1, wi)

C(wi−1)
.

Similarly, the trigram maximum likelihood estimate is:

PMLE(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)

C(wi−2, wi−1)
.

And the general case of n-gram estimation is:

PMLE(wi+n|wi+1, ..., wi+n−1) = C(wi+1,...,wi+n)P

w

C(wi+1,...,wi+n−1,w) ,

= C(wi+1,...,wi+n)
C(wi+1,...,wi+n−1)

.

4.5.2 Using ML Estimates with Nineteen Eighty-Four

Training and Testing the Language Model. Before computing the probability of
a word sequence, we must train the language model. The corpus used to derive the
n-gram frequencies is classically called the training set, and the corpus on which
we apply the model, the test set. Both sets should be distinct. If we apply a language
model to a word sequence, which is part of the training corpus, its probability will
be biased to a higher value, and thus will be inaccurate. The training and test sets can
be balanced or not, depending on whether we want them to be specific of a task or
more general.

For some models, we need to optimize parameters in order to obtain the best
results. Again, it would bias the results if at the same time, we carry out the opti-
mization on the test set and run the evaluation on it. For this reason some models
need a separate development set to fine-tune their parameters.

In some cases, especially with small corpora, a specific division between train-
ing and test sets may have a strong influence on the results. It is then preferable
to apply the training and testing procedure several times with different sets and av-
erage the results. The method is to divide randomly the corpus into two sets. We
learn the parameters from the training set, apply the model to the test set, and re-
peat the process with a new random division, for instance, ten times. This method is
called cross-validation, or 10-fold cross-validation if we repeat it 10 times. Cross-
validation smoothes the impact of a specific partition of the corpus.

Marking up the Corpus. Most corpora use some sort of markup language. The
most common markers of N -gram models are the sentence delimiters <s> to mark
the start of a sentence and </s> at its end. For example:

<s> It was a bright cold day in April </s>
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Depending on the application, both symbols can be counted in the n-gram fre-
quencies just as the other tokens or can be considered as context cues. Context cues
are vocabulary items that appear in the condition part of the probability but are never
predicted – they never occur in the right part. In many models, <s> is a context
cue and </s> is part of the vocabulary. We will adopt this convention in the next
examples.

The Vocabulary. We have defined language models that use a finite and predeter-
mined set of words. This is never the case in reality, and the models will have to
handle out-of-vocabulary (OOV) words. Training corpora are typically of millions,
or even billions, of words. However, whatever the size of a corpus, it will never have
a complete coverage of the vocabulary. Some words that are unseen in the training
corpus are likely to occur in the test set. In addition, frequencies of rare words will
not be reliable.

There are two main types of methods to deal with OOV words:

• The first method assumes a closed vocabulary. All the words both in the training
and the test sets are known in advance. Depending on the language model set-
tings, any word outside the vocabulary will be discarded or cause an error. This
method is used in some applications, like voice control of devices.

• The open vocabulary makes provisions for new words to occur with a specific
symbol, <UKN>, called the unknown token. All the OOV words are mapped to
<UNK>, both in the training and test sets.

The vocabulary itself can come from an external dictionary. It can also be ex-
tracted directly from the training set. In this case, it is common to exclude the rare
words, notably those seen only once – the hapax legomena. The vocabulary will then
consist of the most frequent types of the corpus, for example, the 20,000 most fre-
quent types. The other words, unseen or with a frequency lower than a cutoff value,
1, 2, or up to 5, will be mapped to <UKN>.

Computing a Sentence Probability. We trained a bigram language model on a
very small corpus consisting of the three chapters of Nineteen Eighty-Four. We kept
the appendix, “The Principles of Newspeak,” as the test set and we selected this
sentence from it:

<s> A good deal of the literature of the past was, indeed, already being
transformed in this way </s>

We first normalized the text: We created a file with one sentence per line. We
inserted automatically the delimiters <s> and </s>. We removed the punctuation,
parentheses, quotes, stars, dashes, tabulations, and double white spaces. We set all
the words in lowercase letters. We counted the words, and we produced a file with
the unigram and bigram counts.

The training corpus has 115,212 words; 8,635 types, including 3,928 hapax
legomena; and 49,524 bigrams, where 37,365 bigrams have a frequency of 1. Ta-
ble 4.2 shows the unigram and bigram frequencies for the words of the test sentence.
It excludes <s> from the unigram probabilities.
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Table 4.2. Frequencies of unigrams and bigrams.

wi C(wi) PMLE(wi) wi−1, wi C(wi−1, wi) PMLE(wi|wi−1)

<s> 7072 – – – –
A 2482 0.023 <s> a 133 0.019
good 53 0.00049 a good 14 0.006
deal 5 4.62 10−5 good deal 0 0.0
of 3310 0.031 deal of 1 0.2
the 6248 0.058 of the 742 0.224
literature 7 6.47 10−5 the literature 1 0.0002
of 3310 0.031 literature of 3 0.429
the 6248 0.058 of the 742 0.224
past 99 0.00092 the past 70 0.011
was 2211 0.020 past was 4 0.040
indeed 17 0.00016 was indeed 0 0.0
already 64 0.00059 indeed already 0 0.0
being 80 0.00074 already being 0 0.0
transformed 1 9.25 10−6 being transformed 0 0.0
in 1759 0.016 transformed in 0 0.0
this 264 0.0024 in this 14 0.008
way 122 0.0011 this way 3 0.011
</s> 7072 0.065 way </s> 18 0.148

All the words of the sentence have been seen in the training corpus, and we can
compute a probability estimate of it using the unigram relative frequencies:

P (S) ≈ P (a) × P (good) × ... × P (way) × P (< /s >),
≈ 1.18 × 10−48.

The bigrams estimate is defined as

P (S) ≈ P (a| < s >) × P (good|a) × ... × P (way|this) × P (< /s > |way).

and has a zero probability, which is due to sparse data: the fact that the corpus is not
big enough to have all the bigrams covered with a realistic estimate. We shall see in
the next section how to handle them.

4.6 Smoothing N -gram Probabilities

4.6.1 Sparse Data

The approach using the maximum likelihood estimation has an obvious disadvantage
because of the unavoidably limited size of the training corpora. Given a vocabulary of
20,000 types, the potential number of bigrams is 20, 0002 = 400, 000, 000, and with
trigrams, it amounts to the astronomic figure of 20, 0003 = 8, 000, 000, 000, 000. No
corpus yet has the size to cover the corresponding word combinations.
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Among the set of potential n-grams, some are almost impossible, except as ran-
dom sequences generated by machines; others are simply unseen in the corpus. This
phenomenon is referred to as sparse data, and the maximum likelihood estimator
gives no hint on how to estimate their probability.

In this section, we introduce smoothing techniques to estimate probabilities of
unseen n-grams. As the sum of probabilities of all the n-grams of a given length
is 1, smoothing techniques also have to re-arrange the probabilities of the observed
n-grams. Smoothing allocates a part of the probability mass to the unseen n-grams
that, as a counterpart, it shifts – or discounts – from the other n-grams.

4.6.2 Laplace’s Rule

Laplace’s rule (Laplace 1820, p. 17) is probably the oldest published method to cope
with sparse data. It just consists in adding one to all the counts. For this reason, some
authors also call it the add-one method. The frequency of unseen n-grams is equal to
1 and the general estimate of a bigram probability is:

PLaplace(wi+1|wi) =
C(wi, wi+1) + 1∑
w

(C(wi, w) + 1)
=

C(wi, wi+1) + 1

C(wi) + Card(V )
,

where Card(V ) is the number of word types. The denominator correction is neces-
sary to have the probability sum equal to 1.

Table 4.3. Frequencies of bigrams using Laplace’s rule.

wi, wi+1 C(wi, wi+1) C(wi) + Card(V ) PLap(wi+1|wi)

<s> a 133 7072 + 8634 0.0085
a good 14 2482 + 8634 0.0013
good deal 0 53 + 8634 0.00012
deal of 1 5 + 8634 0.00023
of the 742 3310 + 8634 0.062
the literature 1 6248 + 8634 0.00013
literature of 3 7 + 8634 0.00046
of the 742 3310 + 8634 0.062
the past 70 6248 + 8634 0.0048
past was 4 99 + 8634 0.00057
was indeed 0 2211 + 8634 0.000092
indeed already 0 17 + 8634 0.00012
already being 0 64 + 8634 0.00011
being transformed 0 80 + 8634 0.00011
transformed in 0 1 + 8634 0.00012
in this 14 1759 + 8634 0.0014
this way 3 264 + 8634 0.00045
way </s> 18 122 + 8634 0.0022
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With Laplace’s rule, we can use bigrams to compute the sentence probability
(Table 4.3):

P (S) ≈ P (a| < s >) × P (good|a) × ... × P (< /s > |way),
≈ 4.62 × 10−57.

Laplace’s method is easy to understand and implement. It has an obvious draw-
back however: it shifts an enormous mass of probabilities to the unseen n-grams and
gives them a considerable importance. The frequency of the unlikely bigram the of
will be 1, a quarter of the much more common this way.

The discount value is the ratio between the smoothed frequencies and their actual
counts in the corpus. The bigram this way has been discounted by 0.011

0.00045 = 24.4 to
make place for the unseen bigrams. This is unrealistic and shows the major drawback
of this method.

If adding 1 is too much, why not try less, for instance, 0.5. This is the idea of the
Lidstone’s rule. This value is denoted λ. The new formula is then:

PLidstone(wi+1|wi) =
C(wi, wi+1) + λ

C(wi) + λCard(V )
,

which, however, is not a big improvement.

4.6.3 Good–Turing Estimation

The Good–Turing estimation (Good 1953) is one of the most efficient smoothing
methods. As with Laplace’s rule, it reestimates the counts of the n-grams observed
in the corpus by discounting them, and it shifts the probability mass it has shaved
to the unseen bigrams. The discount factor is variable, however, and depends on
the number of times a n-gram has occurred in the corpus. There will be a specific
discount value to n-grams seen once, another one to bigrams seen twice, a third one
to those seen three times, and so on.

Let us denote Nc the number of n-grams that occurred exactly c times in the
corpus. N0 is the number of unseen n-grams, N1 the number of n-grams seen once,
N2 the number of n-grams seen twice, and so on. If we consider bigrams, the value
N0 is Card(V )2 minus all the bigrams we have seen.

The Good–Turing method reestimates the frequency of n-grams occurring c
times using the formula:

c∗ = (c + 1)
E(Nc+1)

E(Nc)
,

where E(x) denotes the expectation of the random variable x. This formula is usually
approximated as

c∗ = (c + 1)
Nc+1

Nc
.

Hence, the Good–Turing estimation of the unseen n-grams is c∗ = N1

N0
, and the

n-grams that have been seen once in the training corpus are reestimated to c∗ = 2N2

N1
.



102 4 Counting Words

The three chapters in Nineteen Eighty-Four contain 37,365 unique bigrams
and 5820 bigrams seen twice. Its vocabulary of 8634 words generates 86342 =
74,545,956 bigrams, of which 74,513,701 are unseen. The Good–Turing method
reestimates the frequency of each unseen bigram to 37, 365/74, 513, 701 = 0.0005
and unique bigrams to 2× (5820/37, 365) = 0.31. Table 4.4 shows the complete the
reestimated frequencies for the n-grams up to 9.

In practice, only high values of Nc are reliable, which correspond to low values
of c. In addition, above a certain threshold, most frequencies of frequency will be
equal to zero. Therefore, the Good–Turing estimation is applied for c < k, where k
is a constant set to 5, 6, . . . , or 10. Other counts are not reestimated.

The probability of a n-gram is given by the formula

PGT (w1, ..., wn) =
c ∗ (w1, ..., wn)

N
,

where c∗ is the reestimated count of w1...wn, and N the original count of n-grams
in the corpus. The conditional frequency is

PGT (wn|w1, ..., wn−1) =
c ∗ (w1, ..., wn)

C(w1, ..., wn−1)
.

Table 4.5 shows the conditional frequencies where only frequencies less than 10 have
been reestimated.

Table 4.4. The reestimated frequencies of the bigrams.

Frequency of occurrence Nc c∗
0 74,513,701 0.0005
1 37,365 0.31
2 5,820 1.09
3 2,111 2.02
4 1,067 3.37
5 719 3.91
6 468 4.94
7 330 6.06
8 250 6.44
9 179 8.93

4.7 Using N -grams of Variable Length

In the previous section, we used smoothing techniques to reestimate the probability
of n-grams of constant length, whether they occurred in the training corpus or not. A
property of these techniques is that they assign a same probability to all the unseen
n-grams.
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Table 4.5. The conditional frequencies using the Good–Turing method.

wi, wi+1 C(wi, wi+1) c ∗ (wi, wi+1) PGT (wi+1|wi)

<s> a 133 133 0.019
a good 14 14 0.006
good deal 0 0.0005 9.46 10−6

deal of 1 0.31 0.062
of the 742 742 0.224
the literature 1 0.31 4.99 10−5

literature of 3 2.02 0.29
of the 742 742 0.224
the past 70 70 0.011
past was 4 3.37 0.034
was indeed 0 0.0005 2.27 10−7

indeed already 0 0.0005 2.95 10−5

already being 0 0.0005 7.84 10−6

being transformed 0 0.0005 6.27 10−6

transformed in 0 0.0005 0.00050
in this 14 14 0.008
this way 3 2.02 0.0077
way </s> 18 18 0.148

Another strategy is to rely on the frequency of observed sequences but of lesser
length: n − 1, n − 2, and so on. As opposed to smoothing, the estimate of each
unseen n-gram will be specific to the words it contains. In this section, we introduce
two techniques: the linear interpolation and the Katz back-off model.

4.7.1 Linear Interpolation

Linear interpolation, also called deleted interpolation (Jelinek and Mercer 1980),
combines linearly the maximum likelihood estimates from length 1 to n. For tri-
grams, it corresponds to:

PDelInterpolation(wn|wn−2, wn−1) = λ1PMLE(wn|wn−2wn−1)+
λ2PMLE(wn|wn−1) + λ3PMLE(wn),

where 0 ≤ λi ≤ 1 and
3∑

i=1

λi = 1.

The values can be constant and set by hand, for instance, λ1 = 0.6, λ2 = 0.3,
and λ3 = 0.1. They can also be trained and optimized from a corpus (Jelinek 1997).

We can now understand why bigram we the is ranked so high in Table 4.1 after
we are and we will. Although, it can occur in English, as in the American constitu-
tion, We, the people. . . , it is not a very frequent combination. In fact, the estimation
has been obtained with an interpolation where the term λ3PMLE(the) boosted the
bigram to the top because of the high frequency of the.
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4.7.2 Back-off

The idea of the back-off model (Katz 1987) is to use the frequency of longest avail-
able n-grams, and if no n-gram is available to back off to the (n− 1)-gram, and then
to (n − 2)-gram, and so on. If n is 3, we first try trigrams, then bigrams, and finally
unigrams. This can be expressed as:

PBackoff (wi|wi−2, wi−1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P̃ (wi|wi−2, wi−1), if C(wi−2, wi−1, wi) �= 0,

α1P (wi|wi−1), if C(wi−2, wi−1, wi) = 0

and C(wi−1, wi) �= 0,

α2P (wi), otherwise.

So far, this model does not tell us how to estimate the n-gram probabilities to the
right of the formula. A first idea would be to use the maximum likelihood estimate,

PMLE(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)

C(wi−2, wi−1)
,

but in this case, the sum of all the probabilities would be more than 1. Therefore we
need the α1 and α2 values to ensure that the sum of probabilities is equal to 1. In
addition, to make room for them, we need to discount the trigram estimates.

The back-off model is often used in conjunction with the Good–Turing discount-
ing and the estimation is solved recursively. Let us first assume that for all the pos-
sible trigrams, we can back off to an observed bigram. We use the Good–Turing
estimate,

P̃ (wi|wi−2, wi−1) =
C∗(wi−2, wi−1, wi)

C(wi−2, wi−1)
,

to discount the observed trigrams and we assign the remaining probability mass to
the unseen trigrams. That is,

1 −
∑

wi,C(wi−2,wi−1,wi)>0

P̃ (wi|wi−2, wi−1).

We compute α1 so that the probability mass of the observed bigrams fits this value.
But we are not finished yet. In case of an unseen bigram, the model uses a uni-

gram estimate. To compute it, the Katz model recursively applies the method it used
with the trigrams. It further discounts the observed bigrams with the Good–Turing
estimation to make room for the unigrams. It then adjusts the α2 value so that the
sum of probabilities of the discounted observed bigrams and the weighted unigram
probabilities is equal to 1.

4.8 Quality of a Language Model

4.8.1 Intuitive Presentation

We can compute the probability of sequences of any length or of whole texts. As
each word in the sequence corresponds to a conditional probability less than 1, the
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product will naturally decrease with the length of the sequence. To make sense, we
normally average it by the number of words in the sequence and extract its nth root.
This measure, which is a sort of a per-word probability of a sequence L, is easier to
compute using a logarithm:

H(L) = − 1

n
log2 P (w1, ..., wn).

We have seen that trigrams are better predictors than bigrams, which are better
than unigrams. This means that the probability of a very long sequence computed
with a bigram model will normally be higher than with a unigram one. The log
measure will then be lower.

Intuitively, this means that the H(L) measure will be a quality marker for a lan-
guage model where lower numbers will correspond to better models. This intuition
has mathematical foundations, as we will see in the two next sections.

4.8.2 Entropy Rate

We used entropy with characters in Chap. 3. We can use it with any symbols such
as words, bigrams, trigrams, or any n-grams. When we normalize it by the length of
the word sequence, we define the entropy rate:

Hrate = − 1

n

∑
w1,...,wn∈L

p(w1, ..., wn) log2 p(w1, ..., wn),

where L is the set of all possible sequences of length n.
It has been proven that when n → ∞ or n is very large and under certain condi-

tions, we have

Hrate(L) = lim
n→∞

− 1
n

∑
w1,...,wn∈L

p(w1, ..., wn) log2 p(w1, ..., wn),

= lim
n→∞

− 1
n log2 p(w1, ..., wn),

which means that we can compute Hrate(L) from a very long sequence, ideally
infinite, instead of summing of all the sequences of a definite length.

4.8.3 Cross Entropy

We can also use cross entropy, which is measured between a text, called the language
and governed by an unknown probability p, and a language model m. Using the same
definitions as in Chap. 3, the cross entropy of m on p is given by:

H(p, m) = − 1

n

∑
w1,...,wn∈L

p(w1, ..., wn) log2 m(w1, ..., wn).

As for the entropy rate, it has been proven that, under certain conditions
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H(p, m) = lim
n→∞

− 1
n

∑
w1,...,wn∈L

p(w1, ..., wn) log2 m(w1, ..., wn),

= lim
n→∞

− 1
n log2 m(w1, ..., wn).

In applications, we generally compute cross entropy on the complete word se-
quence of a test set, governed by p, using a bigram or trigram model, m, derived
from a training set.

In Chap. 3, we saw the inequality H(p) ≤ H(p, m). This means that the cross
entropy will always be an upper bound of H(p). As the objective of a language model
is to be as close as possible to p, the best model will be the one yielding the lowest
possible value. This forms the mathematical background of the intuitive presentation
in Sect. 4.8.1.

4.8.4 Perplexity

The perplexity of a language model is defined as:

PP (p, m) = 2H(p,m).

Perplexity is interpreted as the average “branching factor” of a word: the statisti-
cally weighted number of words that follow a given word. Perplexity is equivalent to
entropy. The only advantage of perplexity is that it results in numbers more compre-
hensible for human beings. It is then more popular to measure the quality of language
models. As is the case for entropy, the objective is to minimize it: the better the lan-
guage model, the lower the perplexity.

4.9 Collocations

Collocations are recurrent combinations of words. They are ubiquitous and arbitrary
in English, French, German, and other languages (Smadja 1993). Simplest colloca-
tions are fixed n-grams such as The White House, and Le Président de la République.
Other collocations involve some morphological or syntactic variation such as the one
linking make and decision in American English: to make a decision, decisions to be
made, made an important decision. Smadja (1993) calls the latter collocations pred-
icative relations.

Collocations underlie word preferences that most of the time cannot easily be
explained by a syntactic or semantic reasoning: they are merely resorting to usage.
Collocations are in the mind of a native speaker. S/he can recognize them as valid. On
the contrary, nonnative speakers may make mistakes when they are not aware of them
or try to produce word-for-word translations. For this reason, many second language
learners’ dictionaries describe most frequent associations. In English, the Oxford
Advanced Learner’s Dictionary, The Longman Dictionary of Contemporary English,
The Cambridge International Dictionary, and The Collins COBUILD carefully list
verbs and prepositions or particles commonly associated such as phrasal verbs set
up, set off, and set out.
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Lexicographers used to identify collocations by introspection and by observing
corpora, at the risk of forgetting some of them. Statistical tests can automatically
extract associated words or “sticky” pairs from raw corpora. We introduce three of
these tests in this section together with programs in Perl to compute them.

4.9.1 Word Preference Measurements

Mutual information (Church and Hanks 1990), t-score (Church and Mercer 1993),
and the likelihood ratio (Dunning 1993) are statistical tests that are widely used to
measure the strength of word associations:

• Mutual information is defined as

I(wi, wj) = log2

P (wi, wj)

P (wi)P (wj)
≈ log2

NC(wi, wj)

C(wi)C(wj)
.

• t-scores are defined as

t(wi, wj) =
mean(P (wi,wj))−mean(P (wi))mean(P (wj))√

σ2(P (wi,wj))+σ2(P (wi))σ2(P (wj))
,

≈ C(wi,wj)−
1
N

C(wi)C(wj)√
C(wi,wj)

.

where C(wi) and C(wj) are respectively the frequencies of word wi and word wj in
the corpus, C(wi, wj) is the frequency of bigram wi, wj , and N is the total number of
words in the corpus. The bigram count can be extended to the frequency of word wi

when it is followed or preceded by wj in a window of k words. The latter definition
is a generalization of the former with k = 1 and j = i + 1.

High t-scores show recurrent combinations of grammatical or very frequent
words such as of the, and the, etc. Table 4.6 shows collocates of set extracted from
the Bank of English using the t-score test. High mutual information shows pairs of
words occurring together but generally with a lower frequency, such as technical
terms. Table 4.7 gives collocates of the word surgery.

Table 4.6. Collocates of set extracted from Bank of English using the t-score test.

Word Frequency Bigram set + word t-score
up 134,882 5512 67.980
a 1,228,514 7296 35.839
to 1,375,856 7688 33.592
off 52,036 888 23.780
out 12,3831 1252 23.320

Dunning (1993) criticized the t-score test and proposed an alternative based on
likelihood ratios:
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Table 4.7. Collocates of surgery extracted from the Bank of English using the mutual infor-
mation test. Note the misspelled word pioneeing.

Word Frequency Bigram word + surgery Mutual info
arthroscopic 3 3 11.822
pioneeing 3 3 11.822
reconstructive 14 11 11.474
refractive 6 4 11.237
rhinoplasty 5 3 11.085

LR(w1, w2) = 2 log
L(p1, k1, n1)L(p2, k2, n2)

L(p, k1, n1)L(p, k2, n2)
,

where
p = C(w2)

N , p1 = C(w1,w2)
C(w1)

, p2 = C(w2)−C(w1,w2)
N−C(w1)

, and L(p, n, k) = pk(1 −
p)n−k.

4.9.2 Extracting Collocations with Perl

Both programs use unigram and bigram statistics. To compute them, we must first
tokenize the text, and count words and bigrams using the tools we have described
before:

$text = <>;
while ($line = <>) {
$text .= $line;

}
$text =~ tr/a-zåàâäæçéèêëîïôöœùûüßA-
ZÅÀÂÄÆÇÉÈÊËÎÏÔÖŒÙÛÜ’()\-,.?!:;/\n/cs;
$text =~ s/([,.?!:;()’\-])/\n$1\n/g;
$text =~ s/\n+/\n/g;
@words = split(/\n/, $text);
for ($i = 0; $i < $#words; $i++) {
$bigrams[$i] = $words[$i] . " " . $words[$i + 1];

}
for ($i = 0; $i <= $#words; $i++) {
$frequency{$words[$i]}++;

}
for ($i = 0; $i < $#words; $i++) {
$frequency_bigrams{$bigrams[$i]}++;

}

Finally, we must know the number of words in the corpus. This corresponds to
the size of the word array: $#word.
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Mutual Information. The Perl program iterates over the word array and applies
the mutual information formula. The program is not optimal and computes the same
value several times:

for ($i = 0; $i < $#words; $i++) {
$mutual_info{$bigrams[$i]} = log(($#words + 1) *

$frequency_bigrams{$bigrams[$i]}/
($frequency{$words[$i]} *

$frequency{$words[$i + 1]}))/log(2);
}

foreach $bigram (keys %mutual_info){
@bigram_array = split(/ /, $bigram);
print $mutual_info{$bigram}, " ", $bigram, "\t",
$frequency_bigrams{$bigram}, "\t",
$frequency{$bigram_array[0]}, "\t",
$frequency{$bigram_array[1]}, "\n";

}

t-Scores. The program is similar to the previous one except the formula:

for ($i = 0; $i < $#words; $i++) {
$t_scores{$bigrams[$i]} =

($frequency_bigrams{$bigrams[$i]} -
$frequency{$words[$i]} *

$frequency{$words[$i + 1]}/($#words + 1))
/sqrt($frequency_bigrams{$bigrams[$i]});

}

foreach $bigram (keys %t_scores ){
@bigram_array = split(/ /, $bigram);
print $t_scores{$bigram}, " ", $bigram, "\t",
$frequency_bigrams{$bigram}, "\t",
$frequency{$bigram_array[0]}, "\t",
$frequency{$bigram_array[1]}, "\n";

}

4.10 Application: Retrieval and Ranking of Documents on the
Web

The advent of the Web in the mid-1990s made it possible to retrieve automatically
quantities of electronic documents at a modest cost. Companies providing such a
service are among the most popular sites on the Internet. The most notable ones
include Google, Yahoo, and MSN Search.
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Web search systems or engines are based on “spiders” or “crawlers” that visit
Internet addresses, follow links they encounter, and collect all the pages they traverse.
Crawlers can amass billions of pages every month. They necessitate massive network
bandwidth, storage capacity, and computing power.

All the pages the crawlers download are tokenized and undergo a full text index-
ing. The engine lists all the words of its collection of documents and links each word
with the pages where this word occurs in. This is pretty much like a book index ex-
cept that it considers all the words. When a user asks for a specific word, the search
system answers with the pages that contain it.

Search engines represent documents internally using statistical or popularity
models. A popular representation is the vector space model (Salton 1988). The idea
is to represent the documents in a vector space whose directions are the words. Then
documents are vectors in a space of words. Let us first suppose that the document co-
ordinates are the occurrence count of each word. A document would be represented
as: d = (C(w1), C(w2), C(w3), ..., C(wn)). Table 4.8 shows the matrix represent-
ing a collection of documents where each cell (Di, wj) contains the frequency of wj

in document Di.

Table 4.8. The word by document matrix. Each cell (Di, wj) contains the frequency of wj in
document Di.

Words\Documents D1 D2 D3 . . . Dm

W1

W2

...
Wn

Using the vector space model, we can measure the similarity of two documents
by the angle they form in the vector space. It is easier to computer the cosine of the
angle:

cos(q,d) =

n∑
i=1

qidi√
n∑

i=1

q2
i

√
n∑

i=1

d2
i

.

In fact, the rough word count is replaced by a more elaborate term: the term
frequency times the inverted document frequency, better known as tf × idf (Salton
1988). To examine how it works, let us take the phrase Internet in Somalia as an
example.

A document that contains many Internet words is probably more relevant than a
document that has only one. The frequency tfi,j of a term j in a document i reflects
this. It is a kind of a “mass” relevance. However, since Internet is a very common
word, it is not specific. The number of documents that contain it must downplay
its importance. This is the role of idfj = log( N

nj
), where N is the total number of
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documents in the collection – the total number of pages the crawler has collected –
divided by the number of pages nj , where a term j occurs at least once. Somalia
probably appears in fewer documents than Internet and idfj will give it a chance.
The weight of a term j in document i is finally defined as tfi,j × log( N

nj
).

The user may query a search engine with a couple of words or a phrase. Most sys-
tems will then answer with the pages that contain all the words and any of the words
of the question. Some questions return hundreds or even thousands of valid docu-
ments. Ranking a document consists in projecting the space to that of the question
words using the cosine. With this model, higher cosines will indicate better rele-
vance. In addition to tf × idf , search systems may employ heuristics such as giving
more weight to the words in the title of a page (Mauldin and Leavitt 1994).

Google’s PageRank algorithm (Brin and Page 1998) uses a different technique
that takes into account the page popularity. PageRank considers the “backlinks”, the
links pointing to a page. The idea is that a page with many backlinks is likely to be a
page of interest. Each backlink has a specific weight, which corresponds to the rank
of the page it comes from. The page rank is simply defined as the sum of the ranks
of all its backlinks. The importance of a page is spread through its forward links and
contributes to the popularity of the pages it points to. The weight of each of these
forward links is the page rank divided by the count of the outgoing links. The ranks
are propagated in a document collection until they converge.

4.11 Further Reading

Statistical techniques have been applied first to speech recognition, lexicography, and
later to other domains of linguistics. Their use has been a matter of debate because
they opposed Chomsky’s competence model. For a supporting review and a historical
turning point, see the special issues of Computational Linguistics (1993, 1 and 2).

Interested readers will there find details on χ2 tests and likelihood ratios to im-
prove collocation detection in Dunning (1993). Other methods to obtain semantic
clusters have been described by Brown et al. (1992). Manning and Schütze (1999)
describe statistical methods in detail.

There are several language modeling toolkits available from the Internet. The SRI
Language Modeling collection (Stolcke 2002) is a C++ package to create and exper-
iment language models (http://www.speech.sri.com). The CMU-Cambridge Statis-
tical Language Modeling Toolkit (Clarkson and Rosenfeld 1997) is another set of
tools (http://svr-www.eng.cam.ac.uk/˜prc14/toolkit.html).

Exercises

4.1. Retrieve a text you like on the network. Give the five most frequent words.

4.2. Write a Prolog program that connects to a Web site, and explore hypertext Web
links using a breadth-first strategy.



112 4 Counting Words

4.3. Implement a Prolog program to obtain bigrams and their statistics.

4.4. Implement a Prolog program to obtain trigrams and their statistics.

4.5. Retrieve a text you like on the network. Give the five most frequent bigrams and
trigrams.

4.6. Retrieve a text you like on the network. Divide it into a training set and a test
set. Implement the Laplace rule either in Perl or in Prolog. Learn the probabilities on
the training set and compute the perplexity of the test set.

4.7. Retrieve a text you like on the network. Divide it into a training set and a test
set. Implement the Good–Turing estimation either in Perl or in Prolog. Learn the
probabilities on the training set and compute the perplexity of the test set.

4.8. Implement the mutual information test in Prolog.

4.9. Implement the t-score test in Prolog.

4.10. Implement the likelihood ratio in Perl.

4.11. Implement the mutual information test with a window of five words to the left
and to the right of the word.
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Words, Parts of Speech, and Morphology

5.1 Words

5.1.1 Parts of Speech

We can divide the lexicon into parts of speech (POS), that is, classes whose words
share common grammatical properties. The concept of part of speech dates back to
the classical antiquity philosophy and teaching. Plato made a distinction between the
verb and the noun. After him, the word classification further evolved and parts of
speech grew in number until Dionysius Thrax fixed and formulated them under a
form that we still use today. Aelius Donatus popularized the list of the eight parts of
speech: noun, pronoun, verb, participle, conjunction, adverb, preposition, and inter-
jection, in his work Ars grammatica, a reference reading in the Middle Ages:

“Partes orationis quot sunt? Octo. Quae? Nomen pronomen verbum adver-
bium participium coniunctio praepositio interiectio.”

The word parsing comes from the Latin phrase partes orationis ‘parts of speech’.
It corresponds to the identification of the words’ parts of speech in a sentence. In
natural language processing, POS tagging is the automatic annotation of words with
grammatical categories also called POS tags. Parts of speech are also sometimes
called lexical categories.

Most European languages have inherited the Greek and Latin part-of-speech
classification with a few adaptations. The word categories as they are taught today
roughly coincide in English, French, and German in spite of some inconsistencies.
This is not new. To manage the nonexistence of articles in Latin, Latin grammarians
tried to get the Greek article into the Latin pronoun category.

The definition of the parts of speech is sometimes arbitrary and has been a matter
of debate. From Dionysius Thrax, tradition has defined the parts of speech using
morphological and grammatical properties. We shall adopt essentially this viewpoint
here. However, words of a certain part of speech share semantic properties and some
grammars contain statements like a noun denotes a thing and a verb an action.
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Parts of speech can be clustered into two main classes: the closed class and the
open class. Closed class words are relatively stable over time and have a functional
role. They include words such as articles, like English the, French le, or German
der, which change very slowly. Among the closed class, there are the determiners,
the pronouns, the prepositions, the conjunctions, and the auxiliary and modal verbs
(Table 5.1).

Open class words form the bulk of a vocabulary. They appear or disappear with
the evolution of the language. If a new word is created, say a hedgedog, breed of
a hedgehog and a Yorkshire terrier, it will belong to an open class category: here a
noun. The main categories of the open class are the nouns, the adjectives, the verbs,
and the adverbs (Table 5.2). We can add interjection to this list. Interjections are
words such as ouch, ha, oh, and so on, that express sudden surprise, pain, or pleasure.

Table 5.1. Closed class categories.

Part of speech English French German
Determiners the, several, my le, plusieurs, mon der, mehrere, mein
Pronouns he, she, it il, elle, lui er, sie, ihm
Prepositions to, of vers, de nach, von
Conjunctions and, or et, ou und, oder
Auxiliaries and modals be, have, will, would être, avoir, pouvoir sein, haben, können

Table 5.2. Open class categories.

Part of speech English French German
Nouns name, Frank nom, François Name, Franz
Adjectives big, good grand, bon groß, gut
Verbs to swim nager schwimmen
Adverbs rather, very, only plutôt, très, uniquement fast, nur, sehr, endlich

5.1.2 Features

Basic categories can be further refined, that is subcategorized. Nouns, for instance,
can be split into singular nouns and plural nouns. In French and German, nouns
can also be split according to their gender: masculine and feminine for French, and
masculine, feminine, and neuter for German.

Genders do not correspond in these languages and can shape different visions of
the world. Sun is a masculine entity in French – le soleil – and a feminine one in
German – die Sonne. In contrast, moon is a feminine entity in French – la lune – and
a masculine one in German – der Mond.
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Additional properties that can further specify main categories are often called the
features. Features vary among European languages and include notably the number,
gender, person, case, and tense. Each feature has a set of possible values; for instance,
the number can be singular or plural.

Word features are different according to their parts of speech. In English, a verb
has a tense, a noun has a number, and an adjective has neither tense nor number. In
French and German, adjectives have a number but no tense. The feature list of a word
defines its part of speech together with its role in the sentence.

5.1.3 Two Significant Parts of Speech: The Noun and the Verb

The Noun. Nouns are divided into proper and common nouns. Proper nouns are
names of persons, people, countries, companies, and trademarks, such as: England,
Robert, Citroën. Common nouns are the rest of the nouns. Common nouns are often
used to qualify persons, things, ideas.

A noun definition referring to semantics is a disputable approximation, however.
More surely, nouns have certain syntactic features, namely the number, gender, and
case (Table 5.3). A noun group is marked with these features, and other words of the
group, that is, determiners, adjectives, must agree with the features they share.

Table 5.3. Features of common nouns.

Features\Values English French German
Number singular, plural singular, plural singular, plural

waiter/waiters,
book/books

serveur/serveurs,
livre/livres

Buch/Bücher

Gender masculine, feminine masculine, feminine, neuter
serveur/table Ober/Gabel/Tuch

Case nominative, accusative,
genitive, dative
Junge/Jungen/Jungen/Jungen

While number and gender are probably obvious, case might be a bit obscure for
non-German speakers. Case is a function marker that inflects words such as nouns or
adjectives. In German, there are four cases: nominative, accusative, genitive, and da-
tive. The nominative case corresponds to the subject function, the accusative case to
the direct object function, and the dative case to the indirect object function. Genitive
denotes a possession relation. These cases are still marked in English and French for
pronouns.

In addition to these features, the English language makes a distinction between
nouns that can have a plural: count nouns, and nouns that cannot: mass nouns. Milk,
water, air are examples of mass nouns.

Verbs. Semantically, verbs often describe an action, an event, a state, etc. More
positively, and as for the nouns, verbs in European languages are marked by their
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morphology. This morphology is quite elaborate in a language like French, notably
due to the tense system. Verbs can be basically classified into three main types: aux-
iliaries, modals, and main verbs.

Auxiliaries are helper verbs such as be and have that enable us to build some of
the main verb tenses (Table 5.4). Modal verbs are verbs immediately followed by an-
other verb in the infinitive. They usually indicate a modality, a possibility (Table 5.5).
Modal verbs are more specific to English and German. In French, semiauxiliaries
correspond to a similar category.

Table 5.4. Auxiliary verbs.

English French German
to be: am, are, is, was, were
to have: has, have, had
to do: does, did, done

être: suis, es, est, sommes,
sont, étais, était
avoir: ai, as, a, avons, ont,
avais, avait, avions

sein: bin, bist, ist, war, waren
haben: habe, hast, hat,
haben, habt
werden: werde, wirst, wird,
wurde

Table 5.5. Modal verbs.

English French (semiauxiliaries) German
can, could,
must, may, might,
shall, should

pouvoir: peux, peut, pouvons,
pourrai, pourrais
devoir: dois, doit, devons, devrai,
devrais
vouloir: veux, veut, voulons,
voudrai, voudrais

können: kann, können, konnte
dürfen: darf, dürfen, dürfte
mögen: mag, mögen, möchte
müssen: muß, müssen, mußte
sollen: soll, sollen, sollte

Main verbs are all the other verbs. Traditionally, main verbs are categorized ac-
cording to their complement’s function (Table 5.6):

• Copula or link verb – verbs linking a subject to an (adjective) complement. Cop-
ulas include verbs of being such as be, être, sein when not used as auxiliaries,
and other verbs such as seem, sembler, scheinen.

• Intransitive – verbs taking no object.
• Transitive – verbs taking an object.
• Ditransitive – verbs taking two objects.

Verbs have more features than other parts of speech. First, the verb group shares
certain features of the noun (Table 5.7). These features must agree with correspond-
ing ones of the verb’s subject.

Verbs have also specific features, namely the tense, the mode, and the voice:
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Table 5.6. Verb types.

English French German
Copulas Man is mortal

She seems intelligent
l’homme est mortel
Elle paraît intelli-
gente

Der Mensch ist
sterblich
Sie scheint intelligent

Intransitive verbs Frank sleeps
Charlotte runs

François dort
Charlotte court

Franz schläft
Charlotte rennt

Transitive verbs You take the book
Susan reads the
paper

Tu prends le livre
Suzanne lis l’article

Du nimmst das Buch
Susan liest den Artikel

Ditransitive verbs I give my neighbors
the notes

Je donne les notes à
mon voisin

Ich gebe die Notizen
meinem Nachbarn

Table 5.7. Features common to verbs and nouns.

Features\Values English French German
Person 1, 2, and 3 1, 2, and 3 1, 2, and 3

I am je suis ich bin
you are tu es du bist
she is elle est sie ist

Number singular, plural singular, plural singular, plural
I am/we are je suis/nous sommes ich bin/wir sind
She eats/they eat elle mange/elles mangent sie ißt/sie essen

Gender masculine, feminine
– il est mangé/elle est mangée –

• Tense locates the verb, and the sentence, in time. Tense systems are elaborate
in English, French, and German, and do not correspond. Tenses are construed
using form variations (Table 5.8) or auxiliaries (Table 5.9). Tenses are a source
of significant form variation in French.

• Mood enables the speaker to present or to conceive the action in various ways
(Table 5.10).

• Voice characterizes the sequence of syntactic groups. Active voice corresponds
to the “subject, verb, object” sequence. The reverse sequence corresponds to the
passive voice. This voice is possible only for transitive verbs. Some constructions
in French and German use a reflexive pronoun. They correspond to the pronom-
inal voice.

5.2 Lexicons

A lexicon is a list of words, and in this context, lexical entries are also called the
lexemes. Lexicons often cover a particular domain. Some focus on a whole lan-
guage, like English, French, or German, while some specialize in specific areas such
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Table 5.8. Tenses constructed using inflection.

English French German
Base I like to sing j’aime chanter Ich singe gern
Present I sing everyday Je chante tous les jours Ich singe alltags
Preterit (Simple past) I sang in my youth Je chantai dans ma

jeunesse
Ich sang in meiner
Jugend

Imperfect – Je chantais dans ma
jeunesse

–

Future – Je chanterai plus tard –
Present participle I am singing En chantant tous les

jours
Singend

Past participle I have sung before J’ai chanté Ich habe gesungen

Table 5.9. Some tenses constructed using auxiliaries. Values do not correspond across lan-
guages.

English French German
Present progressive I am singing – –
Future I shall (will) sing – Ich werde singen
Present perfect I have sung J’ai chanté Ich habe gesungen
Pluperfect I had sung J’avais chanté Ich hatte gesungen
Passé antérieur – J’eus chanté –
Future perfect I will have sung J’aurai chanté Ich werde gesungen

haben
Futur antérieur I would have sung J’aurais chanté Ich würde gesungen

haben
Past progressive I was singing – –
Future progressive I will be singing – –
Present perfect progres-
sive

I have been singing – –

Future perfect progres-
sive

I will have been
singing

– –

Past perfect progressive I had been singing – –

Table 5.10. Moods (Present only).

English French German
Indicative I am singing Je chante Ich singe
Imperative sing chante singe
Conditional I should (would) sing Je chanterais Ich würde singen
Subjunctive Rare, it appears in expressions

such as: God save the queen
Il faut que je chante Ich singe
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as proper names, technology, science, and finance. In some applications, lexicons
try to be as exhaustive as is humanly possible. This is the case of Internet crawlers,
which index all the words of all the Web pages they can find. Computerized lexicons
are now embedded in many popular applications such as in spelling checkers, the-
sauruses, or definition dictionaries of word processors. They are also the first building
block of most language processing programs.

Several options can be taken when building a computerized lexicon. They range
from a collection of words – a word list – to words carefully annotated with their
pronunciation, morphology, and syntactic and semantic labels. Words can also be
related together using semantic relationships and definitions.

A key point in lexicon building is that many words are ambiguous both syntac-
tically and semantically. Therefore, each word may have as many entries as it has
syntactic or semantic readings. Table 5.11 shows words that have two or more parts
of speech and senses. In this chapter, we only examine the syntactic part. Chap. 13
will cover semantic issues.

Table 5.11. Word ambiguity.

English French German
Part of speech can modal le article der article

can noun le pronoun der pronoun
Semantic great big grand big groß big

great notable grand notable groß notable

Many computerized lexicons are now available from the industry and from
sources on the Internet. English sources are the most numerous at present, but the sit-
uation is rapidly changing for other languages. Most notable ones in English include
word lists derived from the Longman Dictionary of Contemporary English (Procter
1978) and the Oxford Advanced Learner’s Dictionary (Hornby 1974). Table 5.12
shows the first lines of letter A of an electronic version of the OALD.

BDLex – standing for Base de Données Lexicale – is an example of a simple
French lexicon (Pérennou and de Calmès 1987). BDLex features a list of words in a
lemmatized form together with their part of speech and a syntactic type (Table 5.13).

5.2.1 Encoding a Dictionary

Letter trees (de la Briandais 1959) or tries (pronounce try ees) are a useful data
structures to store large lexicons and to search words quickly. The idea behind a
trie is to store the words as trees of characters and to share branches as far as the
letters of two words are identical. Figure 5.1 shows a graphical representation of a
trie encoding the words bin, dark, dawn, tab, table, tables, and tablet.

In Prolog, we can represent this trie as embedded lists, where each branch is a
list. The first element of a branch is the root letter: the first letter of all the subwords
that correspond to the branch. The leaves of the trie are the lexical entries, here the
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Table 5.12. The first lines the Oxford Advanced Learner’s Dictionary.

Word Pronunciation Syntactic tag Syllable count or verb
pattern (for verbs)

a @ S-* 1
a EI Ki$ 1
a fortiori eI ,fOtI’OraI Pu$ 5
a posteriori eI ,p0sterI’OraI OA$,Pu$ 6
a priori eI ,praI’OraI OA$, Pu$ 4
a’s Eiz Kj$ 1
ab initio &b I’nISI@U Pu$ 5
abaci ’&b@saI Kj$ 3
aback @’b&k Pu% 2
abacus ’&b@k@s K7% 3
abacuses ’&b@k@sIz Kj% 4
abaft @’bAft Pu$,T-$ 2
abandon @’b&nd@n H0%,L@% 36A,14
abandoned @’b&nd@nd Hc%,Hd%,OA% 36A,14
abandoning @’b&nd@nIN Hb% 46A,14
abandonment @’b&nd@nm@nt L@% 4
abandons @’b&nd@nz Ha% 36A,14
abase @’beIs H2% 26B
abased @’beIst Hc%,Hd% 26B
abasement @’beIsm@nt L@% 3

t a b l e

s

t

tab

tables

table

tablet

b i n bin

d a
k

n

dark

dawn

r

wroot

Fig. 5.1. A letter tree encoding the words tab, table, tablet, and tables.
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Table 5.13. An excerpt from BDLex. Digits encode accents on letters. The syntactical tags of
the verbs correspond to their conjugation type taken from the Bescherelle reference.

Entry Part of speech Lemma Syntactic tag
a2 Prep a2 Prep_00_00;
abaisser Verbe abaisser Verbe_01_060_**;
abandon Nom abandon Nom_Mn_01;
abandonner Verbe abandonner Verbe_01_060_**;
abattre Verbe abattre Verbe_01_550_**;
abbe1 Nom abbe1 Nom_gn_90;
abdiquer Verbe abdiquer Verbe_01_060_**;
abeille Nom abeille Nom_Fn_81;
abi3mer Verbe abi3mer Verbe_01_060_**;
abolition Nom abolition Nom_Fn_81;
abondance Nom abondance Nom_Fn_81;
abondant Adj abondant Adj_gn_01;
abonnement Nom abonnement Nom_Mn_01;
abord Nom abord Nom_Mn_01;
aborder Verbe aborder Verbe_01_060_**;
aboutir Verbe aboutir Verbe_00_190_**;
aboyer Verbe aboyer Verbe_01_170_**;
abre1ger Verbe abre1ger Verbe_01_140_**;
abre1viation Nom abre1viation Nom_Fn_81;
abri Nom abri Nom_Mn_01;
abriter Verbe abriter Verbe_01_060_**;

words themselves that we represent as atoms. Of course, these entries could contain
more information, such as the part of speech, the pronunciation, etc.

[
[b, [i, [n, bin]]]
[d, [a, [r, [k, dark]],

[w, [n, dawn]]]]
[t, [a, [b, tab,

[l, [e, table,
[s, tables],
[t, tablet]]]]]]]]

]

5.2.2 Building a Trie in Prolog

The make_trie/2 predicate builds a trie from a lexicon represented as an ordered
list of atoms.

% make_trie(+WordList, -Trie)
make_trie([Word | WordList], Trie) :-
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make_trielist(Word, Word, WordTrie),
make_trie(WordList, [WordTrie], Trie).

% make_trie(+WordList, -Trie, -FinalTrie)
make_trie([], T, T) :- !.
make_trie([Word | WordList], Trie, FinalTrie) :-
insert_word_in_trie(Word, Word, Trie, NewTrie),
make_trie(WordList, NewTrie, FinalTrie).

The make_trie/2 predicate uses make_trielist/3 to transform an atom
into a trie representing a single word. The make_trielist/3 predicate takes the
word and the lexical entry as an input:

?- make_trielist(tab, noun, TL).
TL = [t, [a, [b, noun]]]

%make_trielist(+Word, +Leave, -WordTtrie)
% Creates the trie for a single word.
% Leaf contains the type of the word.
make_trielist(Word, Leaf, WordTrie) :-
atom_chars(Word, CharList),
make_trielist_aux(CharList, Leaf, WordTrie).

make_trielist_aux([X], Leaf, [X, Leaf]) :- !.
make_trielist_aux([X | L], Leaf, [X | [LS]]) :-
make_trielist_aux(L, Leaf, LS).

Finally,make_trie/2 inserts a word trie into the lexicon trie using insert_-
word_in_trie/4:

%Inserts a word in a trie.
%The Leaf argument contains the type of the word
%insert_word_in_trie(+Word, +Leaf, +Trie, -NewTrie)
insert_word_in_trie(Word, Leaf, Trie, NewTrie) :-
make_trielist(Word, Leaf, WordTrie),
insert_wordtrie_in_trie(WordTrie, Trie, NewTrie).

%Inserts a word trie in a trie
%insert_wordtrie_in_trie(+WordTrie, +Trie, -NewTrie)
insert_wordtrie_in_trie([H | [T]],

[[H, Leaf | BT] | LT], [[H, Leaf | NB] | LT]) :-
atom(Leaf),
!,
insert_wordtrie_in_trie(T, BT, NB).

% Traverses a segment shared between the trie and
% the word and encounters a leaf.
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% It assumes that the leaf is an atom.

insert_wordtrie_in_trie([H | [T]], [[H | BT] | LT],
[[H | NB] | LT]) :-

!,
insert_wordtrie_in_trie(T, BT, NB).

% Traverses a segment shared between the trie and
% the word.

insert_wordtrie_in_trie([H | T], [[HT | BT] | LT],
[[HT | BT] | NB]) :-

!,
insert_wordtrie_in_trie([H | T], LT, NB).

% Traverses a nonshared segment

insert_wordtrie_in_trie(RW, RT, NB) :-
append(RT, [RW], NB),
!.

% Appends the remaining part of the word to the trie.

5.2.3 Finding a Word in a Trie

The rules to find a word in a trie are easier to write. A first rule compares the first
letter of the word to the trie and unifies with the branch starting with this letter.
It continues recursively with the remaining characters of the word. A second rule
extracts the lexical entries that we assume to be atoms.

% Checks if a word is in a trie
% is_word_in_trie(+WordChars, +Trie, -Lex)
is_word_in_trie([H | T], Trie, Lex) :-
member([H | Branches], Trie),
is_word_in_trie(T, Branches, Lex).

is_word_in_trie([], Trie, LexList) :-
findall(Lex, (member(Lex, Trie), atom(Lex)),

LexList),
LexList \= [].

% We assume that the word lexical entry is an atom

5.3 Morphology

5.3.1 Morphemes

From a morphological viewpoint, a language is a set of morphemes divided into lexi-
cal and grammatical morphemes. Lexical morphemes correspond to the word stems
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and form the bulk of the vocabulary. Grammatical morphemes include grammatical
words and the affixes. In European languages, words are made of one or more mor-
phemes (Table 5.14). The affixes are concatenated to the stem (bold): before it – the
prefixes (underlined) – and after it – the suffixes (double underlined). When a prefix
and a suffix surrounding the stem are bound together, it is called a circumfix, as in
the German part participle (wavy underlines).

Table 5.14. Morpheme decomposition. We replaced the stems with the corresponding lemmas.

Word Morpheme decomposition
English disentangling dis+en+tangle+ing

rewritten re+write+en
French désembrouillé dé+em+brouiller+é

récrite re+écrire+te
German entwirrend ent+wirren+end

wiedergeschrieben wieder+
��

ge+schreiben+
�

en

Affixing grammatical morphemes to the stem is general property of most Euro-
pean languages, which is concatenative morphology (Fig. 5.2). Although there are
numerous exceptions, it enables us to analyze the structure of most words.

stem suffixes prefixes 

Fig. 5.2. Concatenative morphology where prefixes and suffixes are concatenated to the stem.

Concatenative morphology is not universal, however. The Semitic languages, like
Arabic or Hebrew, for instance, have a templatic morphology that interweaves the
grammatical morphemes to the stem. There are also examples of nonconcatenative
patterns in European languages like in irregular verbs of German. The verb singen
‘sing’ has the forms sangst ‘you sang’ and gesungen ‘sung’ where the stem [s–ng]
is embedded into the grammatical morphemes [–a–st] for the second-person preterit
(Fig. 5.3) and [ge–u–en] for the past participle (Fig. 5.4).

5.3.2 Morphs

Grammatical morphemes represent syntactic or semantic functions whose realiza-
tions in words are called morphs. Using an object-oriented terminology, morphemes
would be the classes, while morphs would be the objects. The allomorphs corre-
spond to the set of all the morphs in a morpheme class.

The plural morpheme of English and French nouns is generally realized with an
s suffix – an s added at the end of the noun. It can also be es or nothing (∅) in English
and ux in French. In German, the plural morpheme can take several shapes, such as
suffixes e, en , er, s, or an umlaut on the first vowel of the word (Table 5.15):
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s u ng st 

Grammatical morpheme 
Preterit 

Lexical morpheme
singen 

Grammatical morpheme 
2nd person 

Fig. 5.3. Embedding of the stem into the grammatical morphemes in the German verb sangst
(second-person preterit of singen). After Simone (1998, p. 144).

ge s u ng en 

Grammatical morphemes 
Past participle 

Lexical morpheme
singen 

Fig. 5.4. Embedding of the stem into the grammatical morphemes in the German verb gesun-
gen (past participle of singen). After Simone (1998, p. 144).

• In English, suffixes -s, -es, etc.
• In French, -s, -ux, etc.
• In German, an umlaut on the first vowel and the -e suffix, or simply the -e suffix.

Table 5.15. Plural morphs.

Plural of nouns Morpheme decomposition
English hedgehogs hedgehog+s

churches church+es
sheep sheep+∅

French hérissons hérisson+s
chevaux cheval+ux

German Gründe Grund+(¨)e
Hände Hand+(¨)e
Igel Igel+∅

Plurals also offer exceptions. Many of the exceptions, such as mouse and mice,
are not predictable and have to be listed in the lexicon.

5.3.3 Inflection and Derivation

Some Definitions. We saw in Chap. 1 that morphology can be classified into in-
flection, the form variation of a word according to syntactic features such as gender,



126 5 Words, Parts of Speech, and Morphology

number, person, tense, etc., and derivation, the creation of a new word – a new mean-
ing – by concatenating a word with a specific affix. A last form of construction is the
composition (compounding) of two words to give a new one, for instance, part
of speech, can opener, pomme de terre. Composition is more obvious in German,
where such new words are not separated with a space, for example, Führerschein.
In English and French, some words are formed in this way, such as bedroom, or
are separated with a hyphen, centre-ville. However, the exact determination of other
compounded words – separated with a space – can be quite tricky.

Inflection. Inflection corresponds to the application of a grammatical feature to a
word, such as putting a noun into the plural or a verb into the past participle (Ta-
ble 5.16). It is also governed by its context in the sentence; for instance, the word is
bound to agree in number with some of its neighbors.

Inflection is relatively predictable – regular – depending on the language. Given a
lemma, its part of speech, and a set of grammatical features, it is possible to construct
a word form using rules, for instance, gender, plural, or conjugation rules. The past
participle of regular English, French, and German verbs can be respectively formed
with an ed suffix, an é suffix, and the ge prefix and the t suffix. Morphology also
includes frequent exceptions that can sometimes also be described by rules.

Table 5.16. Verb inflection with past participle.

English French German
Base form work travailler, chanter arbeiten

sing paraître singen
Past participle (regular) worked travaillé, chanté gearbeitet
Past participle (exception) sung paru gesungen

Inflectional systems are similar in European languages but show differences ac-
cording to the syntactic features. In English, French, and German, nouns are in-
flected with plurals and are consequently decorated with a specific suffix. How-
ever, in French and other Romance languages, verbs are inflected with future. Verb
chanterons is made of two morphs: chant ‘sing’ and -erons. The first one is the stem
(root) of chanter, and the second one is a suffix indicating the future tense, the first
person, and the plural number. In English and German, this tense is rendered with an
auxiliary: we shall sing or wir werden singen.

Derivation. Derivation is linked to lexical semantics and involves another set of
affixes (Table 5.17). Most affixes can only be attached to a specific lexical category
(part of speech) of words: some to nouns, others to verbs, etc. Some affixes leave the
derived word in the same category, while some others entail a change of category. For
instance, some affixes transform adjectives into adverbs, nouns into adjectives, and
verbs into nouns (Table 5.18). Derivation rules can be combined and are sometimes
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complex. For instance, the word disentangling features two prefixes: dis- and en-,
and a suffix -ing.

Table 5.17. Derivational affixes.

English French German
Prefixes foresee, unpleasant prévoir, déplaisant vorhersehen, unangenehm
Suffixes manageable, rigorous gérable, rigoureux vorsichtich, streitbar

Table 5.18. Derivation related to part of speech.

Adjectives Adverbs Nouns Adjectives Verbs Nouns
English recent recently air aerial compute computation

frank frankly base basic
French récent récemment lune lunaire calculer calcul

franc franchement air aérien
German glücklich glücklicherweise Luft luftig rechnen Rechnung

möglich möglicherweise Grund gründlich

Some semantic features of words, such as the contrary or the possibility, can
be roughly associated to affixes, and so word meaning can be altered using them
(Table 5.19). However, derivation is very irregular. Many words cannot be generated
as simply, because the word does not exist or sounds weird. In addition, some affixes
cannot be mapped to clear semantic features.

Table 5.19. Word derivation.

Word Contrary Possibility
English pleasant

do
unpleasant
undo

*pleasable
doable

French plaisant
faire

déplaisant
défaire

*plaisable
faisable

German angenehm
tun

unangenehm
*untun

*angenehmbar
tunlichst

Compounding is a feature of German, Dutch, and the Scandinavian languages. It
resembles the English noun sequences with the difference that nouns are not sepa-
rated with a white space. English open compounds (e.g., word processor) are.

Morphological Processing. Morphological processing includes parsing and gen-
eration (Table 5.20). Parsing consists in splitting an inflected, derived, or com-
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pounded word into morphemes; this process is also called a lemmatization. Lemma-
tization refers to transforming a word into its canonical dictionary form, for example,
retrieving into retrieve, recherchant into rechercher, or suchend into suchen. Stem-
ming consists of removing the suffix from the rest of the word. Taking the previous
examples, this yields retriev, recherch, and such. Lemmatization and stemming are
often mistaken. Conversely, generation consists of producing a word – a lexical form
– from a set of morphemes.

Table 5.20. Morphological generation and parsing.

Generation →
English French German
dog+s dogs chien+s chiens Hund+e Hunde
work+ing working travailler+ant travaillant arbeiten+end arbeitend
un+do undo dé+faire défaire

← Parsing

In French, English, and German, derivation operates on open class words. In
English and French, a word of this class consists of a stem preceded by zero or
more derivational prefixes and followed by zero or more derivational suffixes. An
inflectional suffix can be appended to the word. In German, a word consists of one
or more stems preceded by zero or more derivational prefixes and followed zero
or more derivational suffixes. An inflectional prefix and an inflectional suffix can
be appended to the word (Table 5.21). As we saw earlier, these rules are general
principles of concatenative morphology that have exceptions.

Table 5.21. Open class word morphology, where * denotes zero or more elements and ?
denotes an optional element.

English and French prefix* stem suffix* inflection?
German inflection? prefix* stem* suffix* inflection?

Ambiguity. Word lemmatization is often ambiguous. An isolated word can lead
to several readings: several bases and morphemes, and in consequence several cate-
gories and features as exemplified in Table 5.22.

Lemmatization ambiguities are generally resolved using the word context in the
sentence. Usually only one reading is syntactically or semantically possible, and oth-
ers are not. The correct reading of a word’s part of speech is determined considering
the word’s relations with the surrounding words and with the rest of the sentence.
From a human perspective, this corresponds to determining the word’s function in
the sentence. As we saw in the introduction, this process has been done by genera-
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Table 5.22. Lemmatization ambiguities.

Words Words in context Lemmatization
English Run

1. A run in the forest
2. Sportsmen run everyday

1. run: noun singular
2. run: verb present third person plu-

ral

French Marche

1. Une marche dans la forêt
2. Il marche dans la cour

1. marche: noun singular feminine
2. marcher: verb present third per-

son singular

German Lauf

1. Der Lauf der Zeit
2. Lauf schnell!

1. Der Lauf: noun, sing, masc
2. laufen: verb, imperative, singular

tions of pupils dating as far back as the schools of ancient Greece and the Roman
Empire.

5.3.4 Language Differences

Paper lexicons do not include all the words of a language but only lemmas. Each
lemma is fitted with a morphological class to relate it to a model of inflection or pos-
sible exceptions. A French verb will be given a class of conjugation or its exception
pattern – one among a hundred. English or German verbs will be marked as regular
or strong and in this latter case will be given their irregular forms. Then, a reader can
apply morphological rules to produce all the lexical forms of the language.

Automatic morphological processing tries to mimic this human behavior. Nev-
ertheless, it has not been so widely implemented in English as in other languages.
Programmers have often preferred to pack all the English words into a single dic-
tionary instead of implementing a parser to do the job. This strategy is possible for
European languages because morphology is finite: there is a finite number of noun
forms, adjective forms, or verb forms. It is clumsy, however, to extend it to languages
other than English because it considerably inflates the size of dictionaries.

Statistics from Xerox (Table 5.23) show that techniques available for storing En-
glish words are very costly for many other languages. It is not a surprise that the
most widespread morphological parser – KIMMO – was originally built for Finnish,
one of the most inflection-rich languages. In addition, while English inflection is
tractable by means of storing all the forms in a lexicon, it is often necessary to re-
sort to a morphological parser to deal with forms such as: computer, computerize,
computerization, recomputerize (Antworth 1994), which cannot all be foreseen by
lexicographers.
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Table 5.23. Some language statistics from a Xerox promotional flyer.

Language Number of stems Number of inflected forms Lexicon size (kb)
English 55,000 240,000 200–300
French 50,000 5,700,000 200–300
German 50,000 350,000 or 450

infinite (compounding)
Japanese 130,000 200 suffixes 500

20,000,000 word forms 500
Spanish 40,000 3,000,000 200–300

5.4 Morphological Parsing

5.4.1 Two-Level Model of Morphology

Using a memory expensive method, lemmatization can be accomplished with a lex-
icon containing all the words with all their possible inflections. A dictionary lookup
yields then the lemma of each word in a text. Although it has often been used for En-
glish, this method is not very efficient for many other languages. We now introduce
the two-level model of Kimmo Koskenniemi (1983), which is universal and has been
adopted by many morphological parsers.

The two-level morphology model enables us to link the surface form of a word
– the word as it is actually in a text – to its lexical or underlying form – its se-
quence of morphemes. Karttunen (1983) did the first implementation of this model,
which he named KIMMO. A later implementation – PC-KIMMO 2 – was carried
out by Antworth (1995) in C. PC-KIMMO 2 is available from the Summer Institute
of Linguistics through the Internet.

Table 5.24 shows examples of correspondence between surface forms and lexical
forms. Morpheme boundaries in lexical forms are denoted by +.

Table 5.24. Surface and lexical forms.

Generation: Lexical to surface form →
English dis+en+tangle+ed disentangled

happy+er happier
move+ed moved

French dés+em+brouiller+é désembrouillé
dé+chanter+erons déchanterons

German ent+wirren+end entwirrend
wieder+ge+schreiben+en wiedergeschrieben
Parsing: ← Surface to lexical form

In the two-level model, the mapping between the surface and lexical forms is
synchronous. Both strings need to be aligned with a letter-for-letter correspondence.
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That is, the first letter of the first form is mapped to the first letter of the second form,
and so on. To maintain the alignment, possible null symbols are inserted in either
form and are denoted ε or 0, if the Greek letters are not available. They reflect a
letter deletion or insertion. Table 5.25 shows aligned surface and lexical forms.

Table 5.25. Correspondence between lexical and surface forms.

English dis+en+tangle+ed happy+er move+ed
�� . . . �� . . . �� . . .
dis0en0tangl00ed happi0er mov00ed

French dé+chanter+erons cheval+ux cheviller+é
�� . . . �� . . . �� . . .
dé0chant000erons cheva00ux chevill000é

German singen+st Grund+¨e Igel+Ø
�� . . . �� . . . �� . . .
singe00st Gründ00e Igel00

5.4.2 Interpreting the Morphs

Considering inflection only, it is easier to interpret the morphological information us-
ing grammatical features rather than morphs. Most morphological parsers represent
the lexical form as a concatenation of the stem and its features instead of morphs.
For example, the Xerox parser output for disentangle, happier, and Gründe is:

disentangle+Verb+PastBoth+123SP
happy+Adj+Comp
Grund+Noun+Masc+Pl+NomAccGen

where the feature +Verb denotes a verb, +PastBoth, either past tense or past
participle, and +123SP any person, singular or plural; +Adj denotes an adjective
and +Comp, a comparative; +Noun denotes a noun, +Masc masculine, +Pl, plural,
and +NomAccGen either nominative, accusative, or genitive. (All these forms are
ambiguous, and the Xerox parser shows more than one interpretation per form.)

Given these new lexical forms, the parser has to align the feature symbols with
letters or null symbols. The principles do not change, however (Fig. 5.5).

5.4.3 Finite-State Transducers

The two-level model is commonly implemented using finite-state transducers (FST).
Transducers are automata that accept, translate, or generate pairs of strings. The arcs
are labeled with two symbols: the first symbol is the input and the second is the
output. The input symbol is transduced into the output symbol as a transition occurs
on the arc. For instance, the transducer in Fig. 5.6 accepts or generates the string
abbbc and translates into zyyyx.
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Lexical d i s e n t a n g l e +Verb +PastBoth +123spx?y
x?y

x?y
x?y

x?y
x?y

x?y
x?y

x?y
x?y

x?y
x?y

x?y
x?y

Surface d i s e n t a n g l 0 0 e d

Lexical h a p p y +Adj +Compx?y x?y x?y x?y x?y x?y x?y
Surface h a p p i e r

Lexical G r u n d +Noun +Masc +Pl +NomAccGenx?y
x?y

x?y
x?y

x?y
x?y

x?y
x?y

x?y
Surface G r ü n d 0 0 0 e

Fig. 5.5. Alignments with features.

q0 q1 q2

a : z c : x

b : y

Fig. 5.6. A transducer.

Finite-state transducers have a formal definition, which is similar to that of finite-
state automata. A FST consists of five components (Q, Σ, q0, F, δ), where:

1. Q is a finite set of states.
2. Σ is a finite set of symbol or character pairs i : o, where i is a symbol of the input

alphabet and o of the output alphabet. As we saw, both alphabets may include
epsilon transitions.

3. q0 is the start state, q0 ∈ Q.
4. F is the set of final states, F ⊆ Q.
5. δ is the transition function Q × Σ → Q, where δ(q, i, o) returns the state where

the automaton moves when it is in state q and consumes the input symbol pair
i : o.

The quintuple, which defines the automaton in Fig. 5.6 is Q = {q0, q1, q2}, Σ =
{a : z, b : y, c : x}, δ = {δ(q0, a : z) = q1, δ(q1, b : y) = q1, δ(q1, c : x) = q2}, and
F = {q2}.
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5.4.4 Conjugating a French Verb

Morphological FSTs encode the lexicon and express all the legal transitions. Arcs
are labeled with pairs of symbols representing letters of the surface form – the word
– and the lexical form – the set of morphs.

Table 5.26 shows the future tense of regular French verb chanter, where suffixes
are specific to each person and number, but are shared by all the verbs of the so-
called first group. The first group accounts for the large majority of French verbs.
Table 5.27 shows the aligned forms and Fig. 5.7 the corresponding transducer. The
arcs are annotated by the input/output pairs, where the left symbol corresponds to
the lexical form and the right one to the surface form. When the lexical and surface
characters are equal, as in c:c, we just use a single symbol in the arc.

Table 5.26. Future tense of French verb chanter.

Number\Person First Second Third
singular chanterai chanteras chantera
plural chanterons chanterez chanteront

Table 5.27. Aligned lexical and surface forms.

Number\Pers. First Second Third
singular chanter+erai chanter+eras chanter+era

chant000erai chant000eras chant000era
plural chanter+erons chanter+erez chanter+eront

chant000erons chant000erez chant000eront

1 2 3 4 5

6 7 8 9 10 11 15 16

17 18

20

19

12

13
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c h a n
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e:0 r:0 +:0 e r e z

o

n
t

s

a

i

s

Fig. 5.7. A finite-state transducer describing the future tense of chanter.
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This transducer can be generalized to any regular French verb of the first group
by removing the stem part and inserting a self-looping transition on the first state
(Fig. 5.8).

1 2 3 4 5 6 10 11

12 13

15

14

7

8

9

e:0 r:0 +:0 e r e z

o

n
t

s

a

i

s

L:L

Fig. 5.8. A finite-state transducer describing the future tense of French verbs of the first group.

The transducer in Fig. 5.8 also parses and generates forms that do not exist.
For instance, we can forge an imaginary French verb *palimoter that still can be
conjugated by the transducer. Conversely, the transducer will successfully parse the
improbable *palimoterons. This process is called overgeneration (both in parsing and
generation).

Overgeneration is not that harmful provided that inputs are well formed. How-
ever, it can lead to some wrong parses. Consider English and German comparatives
that are formed with -er suffix. Raw implementation of a comparative transducer
would rightly parse greater as great+er but could also parse better or reader. Over-
generation is reduced by a lexical lookup, where the parse result is searched in a
dictionary. This eliminates nonexistent words. It can also be limited by a set of con-
straints on affixes restricting the part of speech of the word to which they can be
appended – here adjectives.

5.4.5 Prolog Implementation

Finite-state transducers can easily be implemented in Prolog. In this section, we im-
plement the future tense of regular French verbs corresponding to Fig. 5.8, and we
remove null symbols by inserting a mute transition in the surface form. The trans-
ducer has four parameters: the start state, normally 1, a final state, together with a
lexical form and a surface one:

transduce(+Start, ?Final, ?Lexical, ?Surface).

The transducer parses surface forms:

?- transduce(1, Final, Lexical, [r, ê, v, e, r, a]).
Final = 7,
Lexical = [r, ê, v, e, r, +, e, r, a]
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It also generates surface forms from lexical ones:

?- transduce(1, Final,
[r, ê, v, e, r, +, e, r, e, z], Surface).

Final = 11,
Surface = [r, ê, v, e, r, e, z]

Finally, the transducer conjugates verbs (generates the verbal forms):

?- transduce(1, 11, [r, ê, v, e, r | L], Surface).
L = [+, e, r, e, z],
Surface = [r, ê, v, e, r, e, z]

Here is the Prolog code:

% arc(Start, End, LexicalChar, SurfaceChar)
% describes the automaton

arc(1, 1, C, C) :- letter(C).
arc(1, 2, e, 0). arc(2, 3, r, 0). arc(3, 4, +, 0).
arc(4, 5, e, e). arc(5, 6, r, r). arc(6, 7, a, a).
arc(7, 8, i, i). arc(7, 9, s, s).
arc(6, 10, e, e). arc(10, 11, z, z).
arc(6, 12, o, o). arc(12, 13, n, n).
arc(13, 14, s, s). arc(13, 15, t, t).

% final_state(S)
% gives the stop condition

final_state(7). final_state(8). final_state(9).
final_state(11). final_state(14). final_state(15).

% letter(+L)
% describes the French lower-case letters

letter(L) :-
name(L, [Code]),
97 =< Code, Code =< 122, !.

letter(L) :-
member(L,

[à, â, ä, ç, é, è, ê, ë, î, ï, ô, ö, ù, û,
ü, ’œ’]),

!.
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% transduce(+Start, ?Final, ?LexicalString,
% ?SurfaceString)
% describes the transducer. The first and second
% rules include mute transitions and
% enable to remove 0s

transduce(Start, Final, [U | LexicalString],
SurfaceString) :-

arc(Start, Next, U, 0),
transduce(Next, Final,LexicalString,SurfaceString).

transduce(Start, Final, LexicalString,
[S | SurfaceString]) :-

arc(Start, Next, 0, S),
transduce(Next, Final,LexicalString,SurfaceString).

transduce(Start, Final, [U | LexicalString],
[S | SurfaceString]) :-

arc(Start, Next, U, S),
U \== 0,
S \== 0,
transduce(Next, Final,LexicalString,SurfaceString).

transduce(Final, Final, [], []) :-
final_state(Final).

We can associate a final state to a part of speech. For instance, state 11 corre-
sponds to the second-person plural of the future.

5.4.6 Ambiguity

In the transducer for future tense, there is no ambiguity. That is, a surface form has
only one lexical form with a unique final state. This is not the case with the present
tense (Table 5.28), and

(je) chante ‘I sing’
(il) chante ‘he sings’

have the same surface form but correspond respectively to the first- and third-person
singular.

Table 5.28. Present tense of French verb chanter.

Number\Person First Second Third
singular chante chantes chante
plural chantons chantez chantent

This corresponds to the transducer in Fig. 5.9, where final states 5 and 7 are
the same. The implementation in Prolog is similar to that of the future tense. Using
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backtracking, the transducer can yield all the final states reflecting the morphological
ambiguity.

1 2 3 4

8 9

12

10

5-7

6

11

e:0 r:0 +:0

o

ε

n
t

s

e

s

z

L:L

Fig. 5.9. A finite-state transducer encoding the present tense of verbs of the first group.

5.4.7 Operations on Finite-State Transducers

Finite-state transducers have mathematical properties similar to those of finite-state
automata. In addition, they can be inverted and composed:

• Let T be transducer. The inversion T−1 reverses the input and output symbols
of the transition function. The transition function of the transducer in Fig. 5.6 is
then δ = {δ(q0, z : a) = q1, δ(q1, y : b) = q1, δ(q1, x : c) = q2}.

• Let T1 and T2 be two transducers. The composition T1 ◦T2 is a transducer, where
the output of T1 acts as the input of T2.

Both the inversion and composition operations result in new transducers. This is
obvious for the inversion. The proof is slightly more complex for the composition.
Let T1 = (Σ, Q1, q1, F1, δ1) and T2 = (Σ, Q2, q2, F2, δ2) be two transducers. The
composition T3 = T1 ◦ T2 is defined by (Σ, Q1 × Q2, 〈q1, q2〉 , F1 × F2, δ3). The
transition function δ3 is built using the transition functions δ1 and δ2, and generating
all the pairs where they interact (Kaplan and Kay 1994):

δ3(〈s1, s2〉 , i, o) = {〈t1, t2〉|∃c ∈ Σ ∪ ε, t1 ∈ δ1(s1, i, c) ∧ t2 ∈ δ2(s2, c, o)} .

The inversion property enables transducers to operate in generating or parsing
mode. They accept both surface and lexical strings. Each symbol of the first string is
mapped to the symbol of the second string. So you can walk through the automaton
and retrieve the lexical form from the surface form, or conversely, as we saw with
the Prolog example.

Composition enables us to break down morphological phenomena. It is some-
times easier to formulate a solution then using intermediate forms between the sur-
face and lexical forms. The correspondence between the word form and the sequence
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of morphemes is not direct but is obtained as a cascade of transductions. Composi-
tion enables us to compact the cascade and to replace the transducers involved in it
by a single one (Karttunen et al. 1992). We will see an example of it with French
irregular verbs in Sect. 5.5.3.

5.5 Morphological Rules

5.5.1 Two-Level Rules

Originally, Koskenniemi (1983) used declarative rules to describe morphology.
These two-level rules enumerate the correspondences between lexical characters and
surface ones and the context where they occur. Context corresponds to left and right
characters of the current character and can often be expressed in terms of vowels (V)
or consonants (C).

In the two-level formalism, a rule is made of a correspondence pair (lexical:
surface), a rule operator, and the immediate left and right context. Operators can
be ⇒, ⇐, ⇔, or /⇐, and mean respectively only in that context, always in that
context, always and only, and never in that context. Left and right contexts where the
rule applies are separated by the symbol __ (Table 5.29).

Table 5.29. Two-level rules.

Rules Description
a:b ⇒ lc __ rc a is transduced as b only when it has lc to the left and rc to

the right
a:b ⇐ lc __ rc a is always transduced as b when it has lc to the left and rc to

the right
a:b ⇔ lc __ rc a is transduced as b always and only when it has lc to the left

and rc to the right
a:b /⇐ lc __ rc a is never transduced as b when it has lc to the left and rc to

the right

In English, the comparative happier is decomposed into two morphemes happy +
er, where the lexical y corresponds to a surface i (Table 5.30). This correspondence
occurs more generally when y is preceded by a consonant and followed by -er, -ed,
or -s. This can be expressed by three rules, where C represents any consonant:

1. y:i ⇐ C:C __ +:0 e:e r:r
2. y:i ⇐ C:C __ +:e s:s
3. y:i ⇐ C:C __ +:0 e:e d:d

Once written, all the rules are applied in parallel. This parallel application is
the main distinctive feature of the two-level morphology compared with other, older
models. This means that when processing a string, every rule must be successfully
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Table 5.30. The y:i transduction rules.

Examples happy+er party+s marry+ed
happi0er parties marri0ed

Rules Cy+er Cy+s Cy+ed
Ci0er Cies Ci0ed

applied to the current pair of characters lexical:surface before moving to the
next pair (Fig. 5.10).

Rule 1 Rule 2 Rule n

h a p p y + e r

h a p p i 0 e r

Fig. 5.10. Applying the rules in parallel.

The left and right contexts of a rule can use a wildcard, the ANY symbol @,
which stands for any alphabetical character, as in

y:x ⇐ __ @:c

This rule means that a lexical y corresponds to a surface x when it is before a
surface c. The corresponding lexical character in the right context is not specified
in the rule, however, the unspecified character represented by the ANY symbol must
be compatible with the correspondence rule that can apply to it. The ANY symbol is
not, strictly speaking, any character then, but any character so that it forms a “feasible
pair”, here with c.

5.5.2 Rules and Finite-State Transducers

It has been demonstrated that any two-level rule can be compiled into an equivalent
transducer (Johnson 1972, Kaplan and Kay 1994). Rule 1, for instance, corresponds
to the automaton in Fig. 5.11, where the pair @:@ denotes any pair that cannot pass
the other transitions.

In practice, morphological phenomena are easier to describe and to understand
using individual rules rather than writing a complex transducer. For this reason, the
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q1 q2 q3 q4 q5 q6

C:C

@:@

y:i +:0 e r

@:@

C:C

Fig. 5.11. A transducer to parse the y:i correspondence.

development of parsers based on the two-level method uses this strategy (Karttunen
1994). It consists in writing a collection of rules to model a language’s morphol-
ogy and compiling them into as many transducers. The parallel transducers are then
combined into a single one using the transducer intersection (Fig. 5.12).

However, while the intersection of two finite automata defines a finite-state au-
tomaton, it is not always the case for finite-state transducers. Kaplan and Kay (1994)
demonstrated that when surface and lexical pairs have the same length – without ε
– the intersection is a transducer. This property is sufficient to intersect the rules in
practical applications. In fact, transducers obtained from two-level rules are inter-
sected by treating the ε symbol as an ordinary symbol (Beesley and Karttunen 2003,
p. 55). Parallel application of rules or the transducer intersection removes one of their
major harmful the side effects: their application outside of their intended context.

Rule 1 Rule 2 Rule n

Lexical forms 

Surface forms 

Single FST 

Lexical forms 

Surface forms 

Intersection

Fig. 5.12. A set of two-level rules intersected into a single FST. After Karttunen et al. (1992).

Originally, rules were compiled by hand. However, this problem can quickly be-
come intractable, especially when it comes to managing conflicting rules or when
rule contexts interfere with transduced symbols. To solve it, we can use a compiler
that creates transducers automatically from two-level rules. The Xerox XFST is an
example of it. It is a publicly available tool, and to date it is the only serious imple-
mentation of a morphological rule compiler.
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5.5.3 Rule Composition: An Example with French Irregular Verbs

When developing a complete morphological parser, it is often convenient to intro-
duce intermediate levels between the lexical and surface strings. This is especially
true when the lexical and surface forms are distant and involve complex morpho-
logical relations. Intermediate levels enable us then to decompose the morphological
system into smaller parts that are easier to treat.

Chanod (1994) gives an example of decomposition with the notoriously difficult
morphology of French irregular verbs (Bescherelle 1980). The French verb system
has about 100 models of inflection – paradigms. Two of them are said to be regular,
the first and second group, and gather the vast majority of the verbs. The third group
is made of irregular verbs and gathers the rest. The irregular group contains the most
frequent verbs: faire ‘do’, savoir ‘know’, connaître ‘know’, dormir ‘sleep’, courir
‘run’, battre ‘beat’, écrire ‘write’, etc.

Table 5.31 shows the conjugation of some irregular verbs. We can see that there
is a set of regular suffixes: s, s, t, ons, ez, and ent, and that most irregularities, also
called alternations, occur at the junction of the stem and the suffix. The stem and
suffix can be directly concatenated, as in courir, but not in dormir, peindre, or battre.

Table 5.31. Conjugation of irregular French verbs, present tense. Courir has regular suffixes
in underlined bold characters. In the other verbs, irregular infections are shown in bold char-
acters.

Infinitive courir dormir battre peindre écrire
First person singular cours dors bats peins écris
Second person singular cours dors bats peins écris
Third person singular court dort bat peint écrit
First person plural courons dormons battons peignons écrivons
Second person plural courez dormez battez peignez écrivez
Third person plural courent dorment battent peignent écrivent

Although apparently complex, general rules can model these alternations using
local contexts corresponding to specific substrings. In the case of dormir, a general
principle in French makes it impossible to have an m followed by an s or t. It then
must be deleted in the three singular persons. For battre, the pairs tt or dt do not occur
in the end of a word or before a final s. Such rules are not tied to one specific verb
but can be applied across a variety of inflection paradigms and persons. Figure 5.5.3
shows the rule sequence that produces the correct surface form of dors.

The verbs peindre and écrire are more complex cases because their conjugation
uses two stems: pein and peign – écri and écriv. Chanod (1994) solves these difficul-
ties using a transduction between the infinitive and a first intermediate form that will
then be regular. Then peindre+IndP+SG+P1 is associated to peign+IndP+SG+P1,
and écrire+IndP+SG+P1 to écriv+IndP+SG+P1. The second intermediate form uses
two-level rules to obtain the correct surface forms: v or gn must be followed by a
vowel or deleted (Fig. 5.5.3). The rule that Chanod uses is, in fact:
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Lexical form: stem dormir +IndP +SG +P1x?y
x?y

Intermediate form: inflection dorm +IndP +SG +P1x?y x?y
Intermediate form:: deletion of m followed by s dorm sx?y x?y
Surface form: dor s

Fig. 5.13. Sequence of rules applied to dormir. After Chanod (1994).

n:0 ⇔ g __ [s|t]

Lexical form: stem peindre +IndP +SG +P1x?y x?y
Intermediate form: inflection peign +IndP +SG +P1x?y x?y
Intermediate form: Depalatalisation of gn peign sx?y

x?y
Surface form: pein s

Fig. 5.14. Sequence of rules applied to peindre. After Chanod (1994).

The FST resulting from the surface, lexical, and intermediate levels are ultimately
combined with the lexicon and composed into a single transducer (Fig. 5.15).

5.6 Application Examples

The Xerox language tools give a good example of what morphological parsers and
part-of-speech taggers can do. These parsers are available for demonstration on the
Internet using a Web browser. Xerox tools let you enter English, French, German,
Italian, Portuguese, and Spanish words, and the server returns the context-free mor-
phological analysis for each term (Tables 5.32–5.34). You can also type in phrases
or sentences and Xerox taggers will disambiguate their part of speech. In addition to
demonstrations, Xerox lists examples of industrial applications that make use of its
tools.

5.7 Further Reading

Dionysius Thrax fixed the parts of speech for Greek in the 2nd century BCE. They
have not changed since and his grammar is still interesting to read, see Lallot (1998).
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Rule 1 Rule 2 Rule n

Lexical forms 

Intermediate forms

FST 1 

Lexical forms 

Intermediate forms

Intersection

Rule 1 Rule 2 Rule n

Surface forms 

FST 2 

Surface forms 

Intersection

Lexicon 

Single FST 

Composition

Lexical forms 

Surface forms 

CompositionLexicon 

Fig. 5.15. Intersection and composition of finite-state transducers. After Karttunen (1994).

Table 5.32. Xerox morphological parsing in English.

Input Term(s): works Input Term(s): round Input Term(s): this
work+Vsg3
work+Npl

round+Vb
round+Prep
round+Adv
round+Adj
round+Nsg

this+Psg
this+Dsg
this+Adv

Table 5.33. Xerox morphological parsing in French.

Input Term(s): <’>etions Input Term(s): porte
étions 1
être+IndI+PL+P1+Verb

porte 6
porter+SubjP+SG+P1+Verb
porter+SubjP+SG+P3+Verb
porter+Imp+SG+P2+Verb
porter+IndP+SG+P1+Verb
porter+IndP+SG+P3+Verb
porte+Fem+SG+Noun
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Table 5.34. Xerox morphological parsing in German.

Input Term(s): arbeite Input Term(s): die
arbeiten+V+IMP+PRÄS+SG2
arbeiten+V+IND+PRÄS+SG1
arbeiten+V+KONJ+PRÄS+SG1
arbeiten+V+KONJ+PRÄS+SG3

die+ART+DEF+PL+AKK
die+ART+DEF+PL+NOM
die+ART+DEF+SG+AKK+FEM
die+ART+DEF+SG+NOM+FEM
die+PRON+DEM+PL+AKK
die+PRON+DEM+PL+NOM
die+PRON+DEM+SG+AKK+FEM
die+PRON+DEM+SG+NOM+FEM
die+PRON+RELAT+PL+AKK
die+PRON+RELAT+PL+NOM
die+PRON+RELAT+SG+AKK+FEM
die+PRON+RELAT+SG+NOM+FEM

A short and readable introduction in French to the history of parts of speech is Ducrot
(1995).

Accounts on finite-state morphology can be found in Sproat (1992) and Ritchie
et al. (1992). Roche and Schabes (1997) is useful book that describes fundamental
algorithms and applications of finite-state machines in language processing, espe-
cially for French. Kornai (1999) covers other aspects and languages. Kiraz (2001)
on the morphology of Semitic languages: Syriac, Arabic, and Hebrew. Beesley and
Karttunen (2003) is an extensive description of the two-level model in relation with
the Xerox tools. It contains a CD-ROM with the Xerox rule compiler.

Antworth (1995) provides a free implementation of KIMMO named PC-KIMMO
2 with source and executable programs. The system is available from the Internet
(http://www.sil.org). It comes with an English lexicon and English morphological
rules. It is open to extensions and modifications. General-purpose finite-state trans-
ducers toolkits are also available. They include the FSA utilities (van Noord and
Gerdemann 2001), the FSM library (Mohri et al. 1998), and Unitex (http://www-
igm.univ-mlv.fr/˜unitex/).

Exercises

5.1. Find a dictionary on the Web in English, French, German, or another language
you would like to study and extract all the articles, conjunctions, prepositions, and
pronouns.

5.2. Implement a morphological parser to analyze regular plurals of nouns in English
or French.

5.3. Add a lexical look-up to Exercise 5.2.

5.4. Implement a morphological parser to analyze plurals of nouns in English or
French, taking a list of exceptions into account.
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5.5. Implement a morphological parser to analyze regular preterits of verbs in En-
glish or German.

5.6. Implement a morphological parser to conjugate French verbs of first group in
the imperfect tense.

5.7. Implement a morphological parser to conjugate regular German verbs in the
present tense.

5.8. Build a morphological parser implementing regular English verb inflection: -s,
-ed, -ing.

5.9. Some verbs have their final -e deleted, for instance, chase (chase+ed, chase+ing).
In the KIMMO formalism, the -e deletion rule is expressed as e:0 ⇔ C:C __ 0:+ V:V.
Draw the corresponding transducer and write the Prolog rules that will parse these
verbs.

5.10. Break the following words into morphemes: computer: computers, computer-
ize, computerization, recomputerize.

5.11. Build a morphological parser that will parse words derived from computer:
computers, computerize, computerization, recomputerize.

5.12. Break the following words into morphemes: chanter: enchanter, rechanter,
déchanter, désenchanter.

5.13. Build a morphological parser that will parse words derived from chanter: en-
chanter, rechanter, déchanter, and désenchanter.
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Part-of-Speech Tagging Using Rules

6.1 Resolving Part-of-Speech Ambiguity

6.1.1 A Manual Method

We saw that looking up a word in a lexicon or carrying out a morphological analysis
on it can leave it with an ambiguous part of speech. The word chair, which can be
assigned two tags, noun or verb, is an example of ambiguity. It is a noun in the phrase
a chair, and a verb in to chair a session. Ambiguity resolution, that is, retaining only
one part of speech (POS) and discarding the others, is generally referred to as POS
tagging or POS annotation.

As children we learned to carry out a manual disambiguation by considering the
grammatical context of the word. In the first phrase, chair is preceded by an article
and therefore is part of a noun phrase. Since there is no other word here, chair is a
noun. In the second phrase, chair is preceded by to, which would not precede a noun,
and therefore is a verb.

Voutilainen and Järvinen (1995) describe a more complex example with the sen-
tence

That round table might collapse.

While the correct part-of-speech tagging is:

That/determiner round/adjective table/noun might/modal verb collapse/verb.

a simple dictionary lookup or a morphological analysis produces many ambiguities,
as shown in Table 6.1.

6.1.2 Which Method to Use to Automatically Assign Parts of Speech

Grammatical constraints are not always sufficient to resolve ambiguous tags. Church
and Mercer (1993) exemplify this with the phrase I see a bird, which can be annotated
as
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Table 6.1. Ambiguities in part-of-speech annotation with the sentence: That round table might
collapse.

Words Possible tags Example of use
that Subordinating conjunction That he can swim is good

Determiner That white table
Adverb It is not that easy
Pronoun That is the table
Relative pronoun The table that collapsed

round Verb Round up the usual suspects
Preposition Turn round the corner
Noun A big round
Adjective A round box
Adverb He went round

table Noun That white table
Verb I table that

might Noun The might of the wind
Modal verb She might come

collapse Noun The collapse of the empire
Verb The empire can collapse

I/noun see/noun a/noun bird/noun

This tagging corresponds to: I/letter of alphabet, see/noun as in Holy See, a/letter
of alphabet, bird/noun. Although, this tag sequence makes no sense here, it cannot
be ruled out as syntactically ill formed, because the parser must accept sequences
of four nouns in other situations, as in city school committee meeting. The proper
tagging is, of course, I/pronoun see/verb a/article bird/noun.

Semantic rules could implement common-sense reasoning and prevent inconsis-
tencies. However, this method is no longer favored. It would imply writing many
rules that could operate in very specific applications, and not on unrestricted texts.

Instead of using general grammar rules, we can consider word preferences. Most
words taken from a dictionary have only one part of speech or have a strong pref-
erence for only one of them, although frequent words tend to be more ambiguous.
From text statistics based on different corpora, in English and in French, Merialdo
(1994) and Vergne (1999) report that 50% to 60% of words have a unique possible
tag and 15% to 25% have only two tags. In both languages, tagging a word with
its most common part of speech yields a success rate of more than 75%. Charniak
(1993) reports a score of more than 90% for English. This figure is called the base-
line. It corresponds to the accuracy obtained with a minimal algorithm, here the word
annotation with its most frequent tag.

Two efficient methods applied locally have emerged to improve this figure and to
solve reasonably well POS tagging. The first one uses rule-based constraints. Rules
consider the left and right context of the word to disambiguate, that is, either discard
or replace a wrong part of speech. Rules are symbolic and can be designed by hand
or derived automatically from hand-annotated corpora.
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The second method is based on statistics. Sequence statistics are automatically
learned from hand-annotated corpora, and probabilistic models are applied that as-
sign the most likely tags to words of a sentence. Both methods enable to tag suc-
cessfully more than 95% of the words of a text. We will describe the first one in this
chapter and the second one in the next chapter.

6.2 Tagging with Rules

Part-of-speech tagging with rules is relatively old (Klein and Simmons 1963). In
the beginning, rules were hand-coded and yielded good results at the expense of
thoroughly and painfully crafting the rules (Voutilainen el al. 1992). The field has
been completely renewed by Brill (1995), who proposed a very simple scheme to
tag a text with rules and an algorithm to learn automatically the rules from annotated
corpora. A good deal of the current work on part-of-speech tagging with rules is now
inspired by his foundational work.

6.2.1 Brill’s Tagger

Brill’s tagger uses a dictionary and assumes that it contains all the words to tag.
Each word in the dictionary is labeled with its most likely (frequent) part of speech
and includes the list of its other legal – possible – parts of speech. Part-of-speech
distributions and statistics for each word can be derived from annotated corpora and
using methods described in Chaps. 2 and 4.

The tagger first assigns each word with its most likely part of speech. It does not
depend on a morphological parser, although it could use one as a preprocessor. It also
features a module to tag unknown words that we will examine in Sect. 6.3. Examples
of likely tags assigned to words are given in Table 6.2.

Table 6.2. Initial step of Brill’s algorithm.

Likely tags yielding a correct tagging Likely tags yielding a wrong tagging
English I/pro can/modal see/verb a/art bird/noun The/art can/modal rusted/verb
French Je/pro donne/verb le/art cadeau/noun Je/pro le/art fais/verb demain/adv
German Der/art Mann/noun kommt/verb Wer/pro ist/verb der/art Mann/noun ,

der/art kommt/verb ?

The tagger then applies a list of transformations to alter the initial tagging. Trans-
formations are contextual rules that rewrite a word tag into a new one. The transfor-
mation is performed only if the new tag of the word is legal – is in the dictionary. If
so, the word is assigned the new tag. Transformations are executed sequentially and
each transformation is applied to the text from left to right. Examples of transforma-
tions are:
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1. In English: Change the tag from modal to noun if the previous word is an article.
2. In French: Change the tag from article to pronoun if the previous word is a

pronoun.
3. In German: Change the tag from article to pronoun if the previous word is a noun

(or a comma.)

These rules applied to the sentences in Table 6.2 yield:

1. In English: The/art can/noun rusted/verb
2. In French: Je/pro le/pro fais/verb demain/adv
3. In German: Wer/pro ist/verb der/art Mann/noun , der/pro kommt/verb ?

Rules conform to a limited number of transformation types, called templates. For
example, the rule

Change the tag from modal to noun if the previous word is an article.

corresponds to template:

Change the tag from X to Y if the previous tag is Z.

The tagger uses in total 11 templates shown in Table 6.3. Brill reports that less
than 500 rules – instantiated templates – are needed in English to obtain an accuracy
of 97%.

Table 6.3. Contextual rule templates, where A, B, C, and D denotes parts of speech, members
of the POS tagset.

Rules Explanation
alter(A, B, prevtag(C)) Change A to B if preceding tag is C
alter(A, B, nexttag(C)) Change A to B if the following tag is C
alter(A, B, prev2tag(C)) Change A to B if tag two before is C
alter(A, B, next2tag(C)) Change A to B if tag two after is C
alter(A, B, prev1or2tag(C)) Change A to B if one of the two preceding

tags is C
alter(A, B, next1or2tag(C)) Change A to B if one of the two following

tags is C
alter(A, B,
prev1or2or3tag(C))

Change A to B if one of the three preceding
tags is C

alter(A, B,
next1or2or3tag(C))

Change A to B if one of the three following
tags is C

alter(A, B, surroundingtag(C,
D))

Change A to B if surrounding tags are C and
D

alter(A, B, nextbigram(C, D)) Change A to B if next bigram tag is C D
alter(A, B, prevbigram(C, D)) Change A to B if previous bigram tag is C D
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6.2.2 Implementation in Prolog

We will exemplify the tagging algorithm with an implementation of two rule tem-
plates:

alter(A, B, prevtag(C))
alter(A, B, prev1or2tag(C))

These rules being instantiated under the form of:

alter(verb, noun, prevtag(art)).
alter(verb, noun, prev1or2tag(art)).

The first rule changes the tag from verb to noun if the previous word is an
article, and the second changes the tag from verb to noun if one of the two
previous words is an article. The second rule is more general that the first one.
We give the code of the first one because it is easier to start with it.

The tag predicate enables us to alter an initially tagged text:

?- tag([the/art, holy/adj, see/verb], L).
L = [the/art, holy/adj, see/noun]

% tag(+InitialTaggedText, -TaggedText)
% Implementation of Brill’s algorithm

tag(InitialTaggedText, TaggedText) :-
bagof(alter(FromPOS, ToPOS, Condition),
alter(FromPOS, ToPOS, Condition), Rules),
forall(Rules, InitialTaggedText, TaggedText).

% Collect all the rules and apply them sequentially

forall([Rule | Rules], Text, TaggedText) :-
apply(Rule, Text, AlteredText),
forall(Rules, AlteredText, TaggedText).

forall([], TaggedText, TaggedText).

%Apply prevtag template
apply(alter(FromPOS, ToPOS, prevtag(POS)),
[PrevWord/POS, Word/FromPOS | RemainingText],
[PrevWord/POS, Word/ToPOS | RemainingText1] ) :-
!,
apply(alter(FromPOS, ToPOS, prevtag(POS)),

[Word/ToPOS | RemainingText],
[Word/ToPOS | RemainingText1] ).

apply(alter(FromPOS, ToPOS, prevtag(POS)),
[X, Y| RemainingText], [X, Y| RemainingText1] ) :-
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apply(alter(FromPOS, ToPOS, prevtag(POS)),
[Y| RemainingText], [Y | RemainingText1] ).

apply(alter(_, _, prevtag(_)), [X], [X]).

% Apply prev1or2tag template
% The first two rules take into account that the rule
% can apply to the second word of the text
apply(alter(FromPOS, ToPOS, prev1or2tag(POS)),
[FirstWord/POS, Word/FromPOS | RemainingText],
[FirstWord/POS, Word/ToPOS | RemainingText1] ) :-
apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),

[FirstWord/POS, Word/ToPOS | RemainingText],
[FirstWord/POS, Word/ToPOS | RemainingText1] ).

apply(alter(FromPOS, ToPOS, prev1or2tag(POS)),
[X, Y| RemainingText], [X, Y| RemainingText1] ) :-
apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),

[X, Y| RemainingText], [X, Y| RemainingText1] ).

apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),
[Prev2Word/POS, Prev1Word/POS1, Word/FromPOS |
RemainingText],

[Prev2Word/POS, Prev1Word/POS1, Word/ToPOS |
RemainingText1] ) :-

!,
apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),
[Prev1Word/POS1, Word/ToPOS | RemainingText],
[Prev1Word/POS1, Word/ToPOS | RemainingText1] ).

apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),
[Prev2Word/POS2, Prev1Word/POS, Word/FromPOS |
RemainingText], [Prev2Word/POS2, Prev1Word/POS,
Word/ToPOS | RemainingText1] ) :-
!,
apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),

[Prev1Word/POS, Word/ToPOS | RemainingText],
[Prev1Word/POS, Word/ToPOS | RemainingText1] ).

apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),
[X, Y, Z | RemainingText],
[X, Y, Z| RemainingText1] ) :-
apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),

[Y, Z| RemainingText], [Y, Z | RemainingText1] ).
apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),

[PrevWord/POS, Word/FromPOS],
[PrevWord/POS, Word/ToPOS]).

apply_aux(alter(_, _, prev1or2tag(_)), [X,Y], [X,Y]).
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%The ordered contextual rules
alter(verb, noun, prevtag(art)).
alter(verb, noun, prev1or2tag(art)).

6.2.3 Deriving Rules Automatically

One of the most interesting features of Brill’s rules is that they can be learned auto-
matically from a hand-annotated corpus. This type of algorithm is called transforma-
tion-based learning (TBL). Let us denote Corpus this corpus and AnnotationRefer-
ence its hand-annotation. In the context, the hand-annotation is often called the Gold
Standard.

The TBL algorithm first assigns the most likely (frequent) tag to each word. It
produces errors, and all rules templates are instantiated for each tagging error mea-
sured against AnnotationReference. The rule that yields the greatest error reduction
is selected and applied to alter the Corpus tagging. This process is iterated as long as
the annotation results are not close enough to AnnotationReference.

Table 6.4 shows the steps of the algorithm. Corpus annotated at iteration i of the
process is denoted AnnotatedCorpus(i). Each iteration enables us to derive a new
rule, which is denoted Rule(i).

Table 6.4. Brill’s learning algorithm.

St. Operation Input Output
1. Annotate each word of the corpus

with its most likely part of speech
Corpus AnnotatedCorpus(1)

2. Compare pairwise the part of speech
of each word of the AnnotationRefer-
ence and AnnotatedCorpus(i)

AnnotationReference
AnnotatedCorpus(i)

List of errors

3. For each error, instantiate the rule
templates to correct the error

List of errors List of tentative rules

4. For each instantiated rule, compute
on AnnotatedCorpus(i) the number
of good transformations minus the
number of bad transformations the
rule yields

AnnotatedCorpus(i)
Tentative rules

Scored tentative rules

5. Select the rule that has the greatest
error reduction and append it to the
ordered list of transformations

Tentative rules Rule(i)

6. Apply Rule(i) to AnnotatedCorpus(i) AnnotatedCorpus(i)
Rule(i)

AnnotatedCorpus(i+1)

7. If number of errors is under
predefined threshold, end the
algorithm else go to step 2.

– List of rules
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As hand-annotated corpus, Brill (1995) used the Penn Treebank (Marcus et al.
1993). Table 6.5 lists the five most productive rules that the algorithm learned from
the Wall Street Journal annotated section of the corpus (Brill 1995).

Table 6.5. The five first transformations learned from the Wall Street Journal corpus (Brill
1995), where NN is a singular noun; VB is a verb, base form; TO is the word to; VBP is a
verb, non-third person singular present; MD is a modal; DT is a determiner; VBD is a verb,
past tense; and VBZ is a verb, third-person singular present. These tags are defined by the
Penn Treebank, and Sect. 6.4.2 details the complete tagset.

Change
# From To Condition
1 NN VB Previous tag is TO
2 VBP VB One of the previous three tags is MD
3 NN VB One of the previous two tags is MD
4 VB NN One of the previous two tags is DT
5 VBD VBN One of the previous three tags is VBZ

6.2.4 Confusion Matrices

At each iteration of TBL algorithm, we can derive a confusion matrix that shows
for each tag how many times a word has been wrongly labeled. Table 6.6 shows
an example of it (Franz 1996), which enables us to understand and track errors.
Again, parts of speech use the Penn Treebank tagset described in Sect. 6.4.2. The
diagonal shows the breakdown of the tags correctly assigned, for example, 99.4%
for determiners (DT). The rest of the table shows the tags wrongly assigned, i.e. for
determiners: 0.3% to prepositions (IN) and 0.3% to adverbs (RB). This table is only
an excerpt, therefore the sum of rows and columns is not equal to 100.

6.3 Unknown Words

We have made the assumption of a finite vocabulary. This is never the case in prac-
tice. Many words will likely be absent from the dictionary: proper and common
nouns, verbs, adjectives, or adverbs.

There is no standard technique to deal with the unknown words. The baseline is
to tag unknown words as nouns since it is the most frequent part of speech. Another
technique is to use suffixes. Brill (1995) proposes a combination of both to extend
the transformation-based algorithm. The initial step tags unknown words as proper
nouns for capitalized words and as common nouns for the rest. Then it applies trans-
formations from a set of predefined templates: change the tag of an unknown word
from X to Y if:
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Table 6.6. A confusion matrix. The first column corresponds to the correct tags, and for each
tag, the rows give the assigned tags. Excerpt from Franz (1996, p. 124). IN is a preposition,
RB is an adverb, JJ is an adjective, RP is a particle, VBG is a verb, gerund (complete tagset in
Sect. 6.4.2).

↓Correct Tagger →
DT IN JJ NN RB RP VB VBD VBG VBN

DT 99.4 0.3 – – 0.3 – – – – –
IN 0.4 97.5 – – 1.5 0.5 – – – –
JJ – 0.1 93.9 1.8 0.9 – 0.1 0.1 0.4 1.5
NN – – 2.2 95.5 – – 0.2 – 0.4 –
RB 0.2 2.4 2.2 0.6 93.2 1.2 – – – –
RP – 24.7 – 1.1 12.6 61.5 – – – –
VB – – 0.3 1.4 – – 96.0 – – 0.2
VBD – – 0.3 – – – – 94.6 – 4.8
VBG – – 2.5 4.4 – – – – 93.0 –
VBN – – 4.6 – – – – 4.3 – 90.6

1. Deleting the prefix (suffix) x, |x| ≤ 4, results in a word (x is any string of length
1 to 4).

2. The first (last) (1, 2, 3, 4) characters of the word are x.
3. Adding the character string x as a prefix (suffix) results in a word.
4. Word w ever appears immediately to the left (right) of the word.
5. Character z appears in the word.

These templates are specific to English, but they can easily be modified to ac-
commodate other European languages. Table 6.7 shows the first five transformations
learned from the Wall Street Journal corpus.

Table 6.7. The first five transformations for unknown words (Brill 1995), where NN is a
noun, singular; NNS a noun, plural; CD cardinal number; JJ an adjective; VBN a verb, past
participle; VBG a verb, gerund (complete tagset in Sect. 6.4.2).

Change
# From To Condition
1 NN NNS Has suffix s
2 NN CD Has character .
3 NN JJ Has character -
4 NN VBN Has suffix ed
5 NN VBG Has suffix ing
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6.4 Standardized Part-of-Speech Tagsets

While basic parts of speech are relatively well defined: determiners, nouns, pronouns,
adjectives, verbs, auxiliaries, adverbs, conjunctions, and prepositions, there is a de-
bate on how to standardize them for a computational analysis. One issue is the level
of detail. Some tagsets feature a dozen tags, some over a hundred. Another issue that
is linked to the latter and is that of subcategories. How many classes for verbs? Only
one or should we create auxiliaries, modal, gerund, intransitive, transitive verbs, etc.?

The debate becomes even more complicated when we consider multiple lan-
guages. In French and German, the main parts of speech can be divided into sub-
classes depending on their gender, case, and number. In English, these divisions are
useless. Although it is sometimes possible to map tagsets from one language to an-
other, there is no universal scheme, even within the same language.

A few years ago, many computational linguists had a personal tagset. There are
now standards, but the discussion is not over. We will examine here a multilingual
part-of-speech scheme (MULTEXT), a widely accepted tagset for English (the Penn
Treebank), and a tagset for Swedish.

6.4.1 Multilingual Part-of-Speech Tags

Building a multilingual tagset imposes the condition of having a set of common
classes, which enables a comparison between languages. These classes correspond
to traditional parts of speech and gather a relatively large consensus among European
languages. However, they are not sufficiently accurate for any language in particular.
Dermatas and Kokkinakis (1995) retained the traditional parts of speech to tag texts
in seven European languages using statistical methods. They also added features
(subcategories) specific to each language (Table 6.8).

Table 6.8. Parts of speech and grammatical features.

Main parts of speech Features (subcategories)
Adjective, noun, pronoun Regular base comparative superlative interrogative person

number case
Adverb Regular base comparative superlative interrogative
Article, determiner, prepo-
sition

Person case number

Verb Tense voice mood person number case

MULTEXT (Ide and Véronis 1995) is a multinational initiative that aims at pro-
viding an annotation scheme for all the Western and Eastern European languages.
MULTEXT also retains the traditional parts of speech (Table 6.9) that are common
to all languages and complements them by a set of features, which they call attributes.
Attributes enable us to subcategorize words and reconcile specific features of differ-
ent European languages. Attributes for nouns and verbs are shown in Tables 6.10 and
6.11.
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MULTEXT attributes concern only the morpho-syntactic layer and represent a
superset of what is needed by all the languages. Some attributes may not be relevant
for a specific language. For instance, English nouns have no gender, and French ones
have no case. In addition, applications may not make use of some of the attributes
even if they are part of the language. Tense, for instance, may be useless for some
applications.

Table 6.9. MULTEXT’s main parts of speech.

Part of speech Code
Noun N
Verb V
Adjective A
Pronoun P
Determiner D
Adverb R
Adposition (Preposition) S
Conjunction C
Numeral M
Interjection I
Residual X

Table 6.10. Features (attributes) and values for nouns.

Position Attribute Value Code
1 Type Common c

Proper p
Masculine m

2 Gender Feminine f
Neuter n

3 Number Singular s
Plural p
Nominative n

4 Case Genitive g
Dative d
Accusative a

A part-of-speech tag is a string where the first character is the main class of
the word to annotate and then a sequence of attribute values. Attribute positions
correspond to their rank in the table, such as those defined in Tables 6.10 and 6.11
for nouns and verbs. When an attribute is not applicable, it is replaced by a dash (-).
An English noun could receive the tag:

N[type=common number=singular] Nc-s-
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Table 6.11. Attributes (features) and values for verbs.

Position Attribute Value Code
Main m

1 Type Auxiliary a
Modal o
Indicative i
Subjunctive s
Imperative m

2 Mood/form Conditional c
Infinitive i
Participle p
Gerund g
Supine s
Base b
Present p

3 Tense Imperfect i
Future f
Past s
First 1

4 Person Second 2
Third 3

5 Number Singular s
Plural p
Masculine m

6 Gender Feminine f
Neuter n

a French one:

N[type=common gender=masculine number=singular] Ncms-

and a German one:

N[type=common gender=neuter number=singular
case=nominative] Ncnsn

A user can extend the coding scheme and add attributes if the application requires
it. A noun could be tagged with some semantic features such as country names,
currencies, etc.

6.4.2 Parts of Speech for English

The Penn Treebank is a large corpus of texts annotated with part-of-speech and syn-
tactic tags (Marcus et al. 1993). The Penn Treebank part-of-speech tagset features 48
tags (Table 6.12).

Unlike MULTEXT, the Penn Treebank tagset concerns only English and shows
little possibility of being adapted to another language. However, it is now widely
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established in the North American language processing community and in industry.
Lancaster University (UK) has defined another important tagset for English.

Table 6.12. The Penn Treebank tagset.

1. CC Coordinating conjunction 25. TO to
2. CD Cardinal number 26. UH Interjection
3. DT Determiner 27. VB Verb, base form
4. EX Existential there 28. VBD Verb, past tense
5. FW Foreign word 29. VBG Verb, gerund/present participle
6. IN Preposition/sub. conjunction 30. VBN Verb, past participle
7. JJ Adjective 31. VBP Verb, non-third pers. sing. pres.
8 JJR Adjective, comparative 32. VBZ Verb, third-pers. sing. present
9. JJS Adjective, superlative 33. WDT wh-determiner
10. LS List item marker 34. WP wh-pronoun
11. MD Modal 35. WP$ Possessive wh-pronoun
12. NN Noun, singular or mass 36. WRB wh-adverb
13. NNS Noun, plural 37. # Pound sign
14. NNP Proper noun, singular 38. $ Dollar sign
15. NNPS Proper noun, plural 39. . Sentence final punctuation
16. PDT Predeterminer 40. , Comma
17. POS Possessive ending 41. : Colon, semicolon
18. PRP Personal pronoun 42. ( Left bracket character
19. PP$ Possessive pronoun 43. ) Right bracket character
20. RB Adverb 44. " Straight double quote
21. RBR Adverb, comparative 45. ‘ Left open single quote
22. RBS Adverb, superlative 46. “ Left open double quote
23. RP Particle 47. ’ Right close single quote
24. SYM Symbol 48. ” Right close double quote

Figure 6.1 shows an annotated excerpt from the Penn Treebank. The Penn Tree-
bank team proceeded in two steps to annotate their corpus. They first tagged the texts
with an automatic stochastic tagger. They then reviewed and manually corrected the
annotation.

Battle-tested/JJ industrial/JJ managers/NNS here/RB always/RB buck/VBP up/RP ner-
vous/JJ newcomers/NNS with/IN the/DT tale/ NN of/IN the/DT first/JJ of/IN their/PP$
countrymen/NNS to/TO visit/VB Mexico/NNP ,/, a/DT boatload/NN of/IN samurai/FW
warriors/NNS blown/VBN ashore/RB 375/CD years/NNS ago/RB ./.
“/“ From/IN the/DT beginning/NN ,/, it/PRP took/VBD a/DT man/NN with/IN ex-
traordinary/JJ qualities/NNS to/TO succeed/VB in/IN Mexico/NNP ”/” says/VBZ Kim-
ihide/NNP Takimura/NNP ,/, president/NN of/IN the/DT Mitsui/NNP group/NN ’s/POS
Kensetsu/NNP Engineering/NNP Inc./NNP unit/NN ./.

Fig. 6.1. Sample of annotated text from the Penn Treebank. After Marcus et al. (1993).
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6.4.3 An Annotation Scheme for Swedish

Current annotation schemes often use XML to encode data. This enables a stricter
definition of codes through a DTD and makes it easier to use and share data. The
annotation is often split into levels that reflect the processing stages. We describe here
an example drawn from the Granska and CrossCheck projects to process Swedish
(Carlberger et al. 2006) from the Kungliga Tekniska Högskolan in Stockholm. The
annotation scheme uses the reference tagset for Swedish defined by the Stockholm-
Umeå Corpus (Ejerhed et al. 1992).

The annotation has four levels, and we will describe two of them. The first one
corresponds to tokenization. Figure 6.2 shows the token annotation of sentence:

Bilen framför justitieministern svängde fram och tillbaka över vägen så att
hon blev rädd.
‘The car in front of the Justice Minister swung back and forth and she was
frightened.’

<tokens>
<token id="1">Bilen</token>
<token id="2">framför</token>
<token id="3">justitieministern</token>
<token id="4">svängde</token>
<token id="5">fram</token>
<token id="6">och</token>
<token id="7">tillbaka</token>
<token id="8">över</token>
<token id="9">vägen</token>
<token id="10">så</token>
<token id="11">att</token>
<token id="12">hon</token>
<token id="13">blev</token>
<token id="14">rädd</token>
<token id="15">.</token>

</tokens>

Fig. 6.2. Token annotation, where the identifier id corresponds to the word position.

The second level contains the part-of-speech information, either with lemmas
(Fig. 6.3) or without (Fig. 6.4). In both annotations, the tokens have been replaced
by their positions. The tag attribute gives the part of speech and its features as a list
separated by dots. The first item of the list the main category; for example, nn is a
noun. The rest describes the features: utr is the utrum gender, sin is the singular
number, def means definite, and nom is the nominative case.
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<taglemmas>
<taglemma id="1" tag="nn.utr.sin.def.nom" lemma="bil"/>
<taglemma id="2" tag="pp" lemma="framför"/>
<taglemma id="3" tag="nn.utr.sin.def.nom"

lemma="justitieminister"/>
<taglemma id="4" tag="vb.prt.akt" lemma="svänga"/>
<taglemma id="5" tag="ab" lemma="fram"/>
<taglemma id="6" tag="kn" lemma="och"/>
<taglemma id="7" tag="ab" lemma="tillbaka"/>
<taglemma id="8" tag="pp" lemma="över"/>
<taglemma id="9" tag="nn.utr.sin.def.nom" lemma="väg"/>
<taglemma id="10" tag="ab" lemma="så"/>
<taglemma id="11" tag="sn" lemma="att"/>
<taglemma id="12" tag="pn.utr.sin.def.sub" lemma="hon"/>
<taglemma id="13" tag="vb.prt.akt.kop" lemma="bli"/>
<taglemma id="14" tag="jj.pos.utr.sin.ind.nom"

lemma="rädd"/>
<taglemma id="15" tag="mad" lemma="."/>

</taglemmas>

Fig. 6.3. Tokens annotated with their part of speech and lemma. Tokens are indicated by their
position. The tag specifies the part of speech and its features.

<tags>
<tag id="1" name="nn.utr.sin.def.nom"/>
<tag id="2" name="pp"/>
<tag id="3" name="nn.utr.sin.def.nom"/>
<tag id="4" name="vb.prt.akt"/>
<tag id="5" name="ab"/>
<tag id="6" name="kn"/>
<tag id="7" name="ab"/>
<tag id="8" name="pp"/>
<tag id="9" name="nn.utr.sin.def.nom"/>
<tag id="10" name="ab"/>
<tag id="11" name="sn"/>
<tag id="12" name="pn.utr.sin.def.sub"/>
<tag id="13" name="vb.prt.akt.kop"/>
<tag id="14" name="jj.pos.utr.sin.ind.nom"/>
<tag id="15" name="mad"/>

</tags>

Fig. 6.4. Tokens annotated with their part of speech only. Tokens are indicated by their posi-
tion.
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6.5 Further Reading

Part-of-speech tagging has a long history in language processing, although many
researchers in computational linguistics neglected it in the beginning. Early works
include Harris (1962) and Klein and Simmons (1963). Harris’ TDAP system was
reconstructed and described by Joshi and Hopely (1999).

Brill’s tagging program marked a breakthrough in tagging with symbolic tech-
niques. It is available from the Internet for English. Roche and Schabes (1995) pro-
posed a dramatic optimization of it that proved ten times faster than and one third the
size of stochastic methods. Constant (1991) and Vergne (1998, 1999) give examples
of efficient symbolic taggers that use manually crafted rules.

Exercises

6.1. Complement Brill’s tagging algorithm in Prolog with rules alter(A, B,
nexttag(C)) and alter(A, B, surroundingtag(C, D)).

6.2. Implement Brill’s learning algorithm in Prolog or Perl with all the rule tem-
plates.
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Part-of-Speech Tagging Using Stochastic Techniques

7.1 The Noisy Channel Model

7.1.1 Presentation

Like transformation-based tagging, statistical (or stochastic) part-of-speech tagging
assumes that each word is known and has a finite set of possible tags. These tags
can be drawn from a dictionary or a morphological analysis. When a word has
more than one possible tag, statistical methods enable us to determine the optimal
sequence of part-of-speech tags T = t1, t2, t3, ..., tn, given a sequence of words
W = w1, w2, w3, ..., wn.

Optimal part-of-speech sequence refers to Shannon’s (1948) noisy channel model,
where a sequence of symbols is transmitted over a noisy channel and received un-
der the form of a sequence of signals. Here, we suppose that part-of-speech tags are
transmitted and come out under the form of words:

t1, t2, t3, ..., tn → noisy channel → w1, w2, w3, ..., wn.

The optimal part-of-speech sequence knowing the word sequence corresponds to
the maximization of the conditional probability:

T̂ = P (t1, t2, t3, ..., tn|w1, w2, w3, ..., wn).

Bayes’ theorem on conditional probabilities of events A and B states that:

P (A|B)P (B) = P (B|A)P (A).

We denote P (W ) = P (w1, w2, w3, ..., wn) and P (T ) = P (t1, t2, t3, ..., tn).
Using Bayes’ theorem, the most probable estimate of the part-of-speech sequence is
given by:

T̂ = arg max
P (T )P (W |T )

P (W )
.

For a given word sequence, w1, w2, w3, ..., wn, P (W ) is constant and we can
leave it out. We can rewrite the formula as:

T̂ = arg maxP (T )P (W |T ).



164 7 Part-of-Speech Tagging Using Stochastic Techniques

7.1.2 The N -gram Approximation

Statistics on sequences of any length are impossible to obtain, and at this point we
need to make some approximations on P (T ) and P (W |T ) to make the estimation
tractable. A product of trigrams usually approximates the complete part-of-speech
sequence:

P (T ) = P (t1, t2, t3, ..., tn) ≈ P (t1)P (t2|t1)
n∏

i=3

P (ti|ti−2, ti−1).

If we use a start-of-sentence delimiter <s>, the two first terms of the product,
P (t1)P (t2|t1), are rewritten as P (< s >)P (t1| < s >)P (t2| < s >, t1), where
P (< s >) = 1.

We estimate the probabilities with the maximum likelihood, PMLE :

PMLE(ti|ti−2, ti−1) =
C(ti−2, ti−1, ti)

C(ti−2, ti−1)
.

Probabilities on trigrams P (ti|ti−2, ti−1) require an estimate for any sequence
of three parts-of-speech tags. This is obtained from hand-annotated corpora. If Np is
the number of the different parts-of-speech tags, there are Np × Np × Np values to
estimate. Most of the time, annotated data is not sufficient and some sequences are
missing. Few corpora are likely to contain a reliable number of the article–article–
article sequence, for instance. We already encountered this problem of sparse data in
Chap. 4. We can solve it using a back-off strategy or a linear interpolation.

If data are missing, we can back-off to bigrams:

P (T ) = P (t1, t2, t3, ..., tn) ≈ P (t1)

n∏
i=2

P (ti|ti−1).

We can further approximate the part-of-speech sequence as the product of part-
of-speech probabilities:

P (T ) = P (t1, t2, t3, ..., tn) ≈
n∏

i=1

P (ti).

And finally, we can combine linearly these approximations:

PLinearInter(ti|ti−2ti−1) = λ1P (ti|ti−2ti−1) + λ2P (ti|ti−1) + λ3P (ti),

with λ1 + λ2 + λ3 = 1, for example, λ1 = 0.6, λ2 = 0.3, λ3 = 0.1.
Using the maximum likelihood estimate, this yields:

PLinearInter(ti|ti−2ti−1) = λ1
C(ti−2, ti−1, ti)

C(ti−2, ti−1)
+ λ2

C(ti−1, ti)

C(ti−1)
+ λ3

C(ti)

N
,

where N is the count of words in the corpus.
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We can obtain optimal λ values by using a development set: a part of the hand-
annotated corpus distinct from the training set and the test set dedicated to the fine-
tuning of parameters. After learning the probabilities from the training set, we will
run the part-of-speech (POS) tagger on the development set. We will vary the λ
values until we find the triplet that yields the best accuracy. We will finally apply the
POS tagger to the test set to know its real accuracy.

The complete word sequence knowing the part-of-speech sequence is usually
approximated as:

P (W |T ) = P (w1, w2, w3, ..., wn|t1, t2, t3, ..., tn) ≈
n∏

i=1

P (wi|ti).

Like the previous probabilities, P (wi|ti) is estimated from hand-annotated cor-
pora using the maximum likelihood:

PMLE(wi|ti) =
C(wi, ti)

C(ti)
.

For Nw different words, there are Np × Nw values to obtain. But in this case,
many of the estimates will be 0.

7.1.3 Tagging a Sentence

We will now give an example of sentence tagging in French with Je le donne ‘I give
it’. Word Je is an unambiguous pronoun. Word le is either an article or a pronoun,
and donne can be a noun (deal) or a verb (donner). Probabilistic tagging consists in
finding the optimal path from the four possible in Fig. 7.1.

le/art

le/pro

donne/vb

donne/n

je/pro

Fig. 7.1. Possible sequences of part-of-speech tags, where pro denotes a pronoun, art an arti-
cle, n a noun, and vb a verb.

Using the formulas given before, we associate each transition with a probability
product: P (wi|ti) × P (ti|ti−2, ti−1). We compute the estimate of part-of-speech
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sequences along the four paths by multiplying the probabilities. The optimal tagging
corresponds to the maximum of these four values:

1. P (pro| < s >) × P (art| < s >, pro) × P (verb|pro, art) ×
P (je|pro) × P (le|art) × P (donne|verb)

2. P (pro| < s >) × P (art| < s >, pro) × P (noun|pro, art) ×
P (je|pro) × P (le|art) × P (donne|noun)

3. P (pro| < s >) × P (pro| < s >, pro) × P (verb|pro, pro) ×
P (je|pro) × P (le|pro) × P (donne|verb)

4. P (pro| < s >) × P (pro| < s >, pro) × P (noun|pro, pro) ×
P (je|pro) × P (le|pro) × P (donne|noun)

This method is very simple. However, it is very costly for long sequences. The
computation with a sentence of N words and a tagset of T tags will have an upper
bound complexity of NT , which means it is exponential.

7.1.4 The Viterbi Algorithm: An Intuitive Presentation

Using the noisy channel model as we described it is not efficient in terms of speed
and memory. This is because the algorithm has to maintain nonoptimal paths for all
the intermediate nodes in the automaton. The Viterbi algorithm is a common way to
optimize the search.

In the naïve implementation, we traversed all the paths and we computed the most
probable POS sequence at the final node of the automaton, i.e., at the final word of
the sentence. The Viterbi algorithm determines the optimal subpaths for each node
in the automaton while it traverses the automaton and discards the others. We shall
extend the example of the previous section to

Je le donne demain dans la matinée.
‘I give it tomorrow morning.’

and let us consider bigrams instead of trigrams to simplify the presentation.
Figure 7.2 shows the possible POS tags and the number of possible paths, which

is 1 × 2 × 2 × 1 × 1 × 2 × 1 = 8. Let us traverse the automaton from Je to dans.

le/art

le/pro

donne/vb

donne/n

je/pro demain/
adv 

dans/
prep

la/art

la/pro

matinée/n

Fig. 7.2. The search space, where adv denotes an adverb and prep a preposition; the other tags
are as given in Fig. 7.1.
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The words demain and dans are not ambiguous, and we saw in the last section
that there are four possible paths at this point. Up to demain, the most likely sequence
will correspond to the most probable path out of the four we saw before:

1. P (pro| < s >) × P (art|pro) × P (verb|art) × P (adv|verb)
P (je|pro) × P (le|art) × P (donne|verb) × P (demain|adv)

2. P (pro| < s >) × P (art|pro) × P (noun|art) × P (adv|noun)
P (je|pro) × P (le|art) × P (donne|noun) × P (demain|adv)

3. P (pro| < s >) × P (pro|pro) × P (verb|pro) × P (adv|verb)
P (je|pro) × P (le|pro) × P (donne|verb) × P (demain|adv)

4. P (pro| < s >) × P (pro|pro) × P (noun|pro) × P (adv|noun)
P (je|pro) × P (le|pro) × P (donne|noun) × P (demain|adv)

Demain has still the memory of the ambiguity of donne: P (adv|verb) and
P (adv|noun). This is no longer the case with dans. According to the noisy chan-
nel model and the bigram assumption, the term brought by the word dans is
P (dans|prep) × P (prep|adv). It does not show the ambiguity of le and donne.
The subsequent terms will ignore it as well.

This means that the optimal POS tag sequence of words before dans is already
determined even if we have not yet reached the end of the sentence. It corresponds
to the highest value of the four paths. It is then sufficient to keep it with the corre-
sponding path. We can forget the others. This is the idea of the Viterbi optimization.
We will describe the algorithm rigorously in the next section.

7.2 Markov Models

When we tagged words with a stochastic technique, we assumed that the current
word’s part of speech depended only on a couple of words before it. This limited
history is a frequent property of many linguistic phenomena. It has been studied
extensively since the end of the 19th century, starting with Andrei Markov. Markov
processes form the theoretical background to stochastic tagging and can be applied
to many problems. We introduce them now.

7.2.1 Markov Chains

A Markov chain or process is a sequence {X1, X2, ..., XT } where Xt denotes a ran-
dom variable at time t. Variables have their values in a finite set of states {q1, ..., qN}
called the state space. Following Rabiner (1989), processes are Markovian if they
have the following properties:

• A limited history. The current state depends only on a constant number of previ-
ous states: one in first-order processes, P (Xt = qj |X1, ..., Xt−1) = P (Xt =
qj |Xt−1), and two in second-order processes P (Xt = qj |X1, ..., Xt−1) =
P (Xt = qj |Xt−2, Xt−1).



168 7 Part-of-Speech Tagging Using Stochastic Techniques

• Independent of time t. For first-order processes, this means that they can be rep-
resented as a transition matrix with coefficients P (Xt = qj |Xt−1 = qi) = aij ,

1 ≤ i, j ≤ N , with ordinary probability constraints
N∑

j=1

aij = 1, and aij ≥ 0.

Markov chains define random transitions from one state to another one. We can
represent them as probabilistic or weighted automata. We just need to augment
transitions of automata we used in Chap. 2 with a probability. Unlike ordinary au-
tomata, the initial state can be any state in the set and will be modeled by a probability

at time 1. The probability of initial states is πi = P (X1 = qi), with
N∑

i=1

πi = 1.

In the case of natural language processing, “time sequence” is not the most rele-
vant term to describe the chain. More appropriately, the sequence corresponds to the
word flow from left to right and t to the word position in the sequence. It is easy then
to see that first-order processes reflect part-of-speech bigrams, while second-order
processes correspond to trigrams. Figure 7.3 shows partial bigram probabilities us-
ing a Markov chain (numbers are fictitious and transitions are not complete). For
part-of-speech tagging, aij coefficients correspond to probabilities of part-of-speech
bigrams computed over the tagset.

art vb

n

pro

adv prep

0.25

0.75

0.3

0.4

1.0

0.8

0.30.35

0.40

0.60

0.40

0.3

0.2

0.25

Fig. 7.3. A Markov chain representing bigram probabilities as part-of-speech transitions (num-
bers are fictitious, and transitions are not complete).

Instead of using an automaton, we can represent a Markov process as a trellis
where states are a function of the time (the word’s positions, here). In part-of-speech
tagging, the vertical axis corresponds to the different part-of-speech values (the
states) and the horizontal axis corresponds to the part-of-speech sequence (Fig. 7.4).
All the possible bigram combinations are represented as arrows from states at time
t − 1 to states at time t. T is the sentence length.
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t1 t2 t3

q1

q2

q3

qN

T 

Fig. 7.4. Trellis that represents the states as the vertical axis and the time as the horizontal axis.
The states correspond to part-of-speech values, and the discrete time values are the indices in
the part-of-speech sequence. T is the sentence length.

7.2.2 Hidden Markov Models

Markov chains provide a model to the part-of-speech sequence. However, this se-
quence is not directly accessible since we usually only have the word sequence.
Hidden Markov models (HMM) are an extension to the Markov chains that make
it possible to include the words under the form of observed symbols. Each state of
an HMM emits a symbol taken from an output set along with an emission proba-
bility. HMMs are then a stochastic representation of an observable output generated
by a hidden sequence of states. They enable us to compute the probability of a state
sequence (the parts of speech) given an output or observation sequence (the words).

We saw that part-of-speech tagging uses a stochastic formula that comprises two
terms: P (T ) and P (W |T ). The first one, P (T ), corresponds to a Markov chain
where transition probabilities between states represent the part-of-speech bigrams.
The second term, P (W |T ), is an HMM superimposed on the chain. It augments
each state with the capacity to emit a word using a probability function P (wi|ti) that
measures the association between the parts of speech and the words (Fig. 7.5). Al-
though a state – a part of speech – can emit any word in the model, most probabilities
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will be 0 in reality. This is because words have a finite number of possible parts of
speech, most of the time, as we saw, only one or two.

tag

P(w1|tag)

P(w2|tag)

P(wM|tag)

Fig. 7.5. Each state in the trellis is augmented with word emission probabilities.

The formal definition of HMMs is based on the Markov chains where we add
the emission properties. Table 7.1 shows the notation and its application in part-of-
speech tagging.

Table 7.1. The hidden Markov model notation and its application to part-of-speech (POS)
tagging.

HMM notation Application to POS tagging
S = {q1, q2, q3, ..., qN} is a finite set of
states.

The set of parts of speech.

V = {v1, v2, v3, ..., vM} is an output
alphabet: a finite set of symbols.

The set of words, the vocabulary.

O = {o1, o2, o3, ..., oT } is the output or
observation sequence, with oi ∈ V obtained
from a sequence of states.

Each part of speech emits one word taken in
the vocabulary. This is what we observe.

A = {aij} is a state transition matrix. The bigram probabilities P (tk = qj |tk−1 =
qi).

B = {bj(vk)} are the emission probabilities
of symbol vk in state j.

The conditional probability to observe a
word given a part of speech P (w|t).

Π = {πi} are the initial state probabilities. The probability of the first part of speech.

7.2.3 Three Fundamental Algorithms to Solve Problems with HMMs

Hidden Markov models are able represent associations between word and parts-of-
speech sequences. However, they do not tell how to solve the annotation problem.
We need complementary algorithms for them to be useful. More generally, problems
to solve fall into three categories that correspond to three fundamental algorithms
(Rabiner 1989):
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• Estimate the probability of an observed sequence. This corresponds to the sum of
all the paths producing the observation. It is solved using the forward procedure.
In the specific case of POS tagging, it will determine the probability of the word
sequence. Although the forward procedure is not of primary importance here, it
is fundamental and has many other applications.

• Determine the most likely path of an observed sequence. This is a decoding prob-
lem that is solved using the Viterbi algorithm.

• Determine (learn) the parameters given a set of observations. This algorithm is
used to build models when we do not know the parameters. It is solved using the
forward–backward algorithm.

We now present the algorithms where we follow Rabiner’s notation (1989).

7.2.4 The Forward Procedure

The first problem to solve is to compute the probability of an observation sequence
O = {o1, o2, o3, ..., oT }, given an HMM model λ = (A, B, π).

If we consider only one specific sequence of states Q = {s1, s2, s3, ..., sT }, with
si ∈ S, we compute it with the observation probability given the state sequence

P (O|Q, λ) =
T∏

t=1
P (ot|st, λ),

= bs1
(o1)bs2

(o2)bs3
(o3)...bsT

(oT ).

multiplied by the state sequence probability

P (Q|λ) = πs1

T∏
t=2

P (st|st−1),

= πs1
as1s2

as2s3
...asT−1sT

.

In HMMs, any sequence of state can produce the observation. This means that
the observation probability is the sum of observation probabilities for all the possible
state combinations:

P (O|λ) =
∑

All Q

P (O|Q, λ)P (Q|λ),

=
∑

All s1,s2,...,sT

πs1
bs1

(o1)as1s2
bs2

(o2)as2s3
bs3

(o3)...asT−1sT
b(oT ).

This method, however, is intractable for long sequences because of its complexity,
NT .

The forward procedure simplifies the brute-force method by factoring all paths
incoming into a state at time t. This means that at each instant of time of the obser-
vation sequence, we maintain exactly N paths: the number of different states.

Let us denote αt(j) the probability of an observation o1, o2, o3, ..., ot, with the
condition that we are in state qj at time t: P (o1, o2, o3, ..., ot, st = qj |λ). We com-
pute αt+1(i) by induction with transitions from all states at time t to state i at time
t + 1. Figure 7.6 shows how αt values are summed to obtain αt+1(i).
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t t+1

q1

q2

qi

qN

a1j

a2j

aij

aNj

qj

αt(i) αt+1(j)

Fig. 7.6. Transitions from states q1, q2, q3, ..., qN at time t to state qj at time t + 1.

We can compute an observation probability with a matrix reproducing the struc-
ture of the trellis in Fig. 7.4. The algorithm iteratively fills the trellis’ columns from
left to right. Each column is an array of length N corresponding to the number of
states where we store the probabilities of the observation so far. The element of index
i in the tth column contains the α(i) value at time t.

The first step of the algorithm fills the first column with the initial probabilities.
The induction loop updates the values from t to t + 1 by summing all the incoming
transitions for each element in the (t +1)th column from the tth column (Table 7.2).
Finally, we obtain the observation probability by summing all the elements of the
last column in the matrix. The complexity of this algorithm is O(N2T ).

Table 7.2. The forward procedure.

Steps Operations
1. Initialization α1(i) = πibi(o1), 1 ≤ i ≤ N

2. Induction αt+1(j) = bj(ot+1) ×
NP

i=1

αt(i)aij , 1 ≤ j ≤ N , and 1 ≤ i ≤ T − 1

3. Termination P (O|λ) =
NP

i=1

αT (i)
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7.2.5 Viterbi Algorithm

The Viterbi algorithm is an efficient method to find the optimal sequence of states
given an observation. As with the forward procedure, it iterates from t = 1 to t = T
and searches the optimal path leading to each state in the trellis at time t.

Let us denote δt(j) the maximal probability of an observation o1, o2, o3, ..., ot

with the condition that we are in state qj at time t:

max
s1,s2,...,st−1

P (s1, s2, ..., st−1, o1, o2, o3, ..., ot, st = qj |λ),

and ψt(j) the corresponding optimal path.
The Viterbi algorithm resembles the forward procedure. It moves from left to

right iteratively to fill the columns in the trellis. Each column element contains the
most probable path, ψ(j), to reach this element and its probability δ(j). In fact, ψ(j)
just needs to store the preceding state in the optimal path.

The first step of the algorithm fills the first column with the initial probabilities.
The induction loop updates the values from t to t + 1 by taking the maximum of all
the incoming transitions for each element in the (t + 1)th column and the node that
led to it. Finally, we determine the most probable path from the maximum of all the
elements of the last column in the matrix. We backtrack in the matrix to find the state
sequence that led to it (Table 7.3).

Table 7.3. The Viterbi algorithm.

Steps Operations
1. Initialization δ1(i) = πibi(o1), 1 ≤ i ≤ N

ψ1(i) = null
2. Induction δt+1(j) = bj(ot+1) × max

1≤i≤N
δt(i)aij , 1 ≤ j ≤ N , and 1 ≤ i ≤

T − 1
ψt+1(j) = arg max

1≤i≤N
δt(i)aij

3. Termination P∗ = max
1≤i≤N

δT (i)

sT ∗ = arg max
1≤i≤N

δT (i)

The optimal path sequence is given by the backtracking: s∗T , s∗T−1 =
ψT (s∗T ), s∗T−2 = ψT−2(s

∗
T−1), ...

The Viterbi algorithm is a dynamic programming technique comparable to the
computation of the min-edit distance. Its implementation also uses a table. Table 7.4
shows how to fill the three first columns with the sentence <s> Je le donne demain
dans la matinée.

We start the sentence with δ1(< s >) = 1.0 and δ1(i) = 0 for the rest of in-
dices i �=< s >. This means that in the first column, all the cells equal 0, except
for one. The computation of the second column is easy. Each cell i is filled with the
term P (i| < s >)×P (Je|i), with i ∈ {prep, adverb, pronoun, verb, noun, art, <
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s >}. The algorithm really starts with the third column. For each cell j, we com-
pute max

i
P (j|i) × P (le|j) × δ2(i). The pronoun cell, for instance, is filled with

max
i

P (pronoun|i)× P (le|pronoun)× δ2(i). This process is iterated for each col-

umn to the end of the matrix.

Table 7.4. The Viterbi algorithm applied to the sentence <s> Je le donne demain dans la
matinée.

i\δ δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

prep 0
adverb 0
pronoun 0
verb 0
noun 0
art 0
<s> 1.0 0 0 0 0 0 0 0

<s> Je le donne demain dans la matinée

7.2.6 The Backward Procedure

We have computed the estimation of an observation from left to right. Although less
natural, we can also compute it from right to left. We now present this backward
procedure to introduce the forward–backward algorithm in the next section.

The backward variable βt(j) = P (ot+1, ot+2, ot+3, ..., oT , st = qj |λ) is the
probability of an observation ot+1, ot+2, ot+3, ..., oT with the condition that we are
in state qj at time t. We compute βt(i) by induction with transitions from state i at
time t to all states at time t + 1. Figure 7.7 shows how βt+1(i) values are summed to
obtain βt, and Table 7.5 shows the procedure.

Table 7.5. The backward procedure.

Steps Operations
1. Initialization βT (i) = 1, 1 ≤ i ≤ N

2. Induction βt(i) =
NP

j=1

aijbj(ot+1)βt+1(i), 1 ≤ j ≤ N , and for t = T − 1 to t = 1.

3. Termination P (O|λ) =
NP

i=1

πibi(o1)β1(i)
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t+1t 

q1

q2

qj

qN

ai1

ai2

aij

aiN

qi

βt+1(j)βt(i)

Fig. 7.7. Transitions from state qi at time t to states q1, q2, q3, ..., qN at time t + 1.

7.2.7 The Forward–Backward Algorithm

The forward–backward algorithm will enable us to derive the aij and bj(ot) coef-
ficients, here P (wi|ti) and P (ti|ti−1), from raw, unannotated texts. Although this
yields results inferior to those obtained from a hand-annotated corpus, it makes it
possible to build a part-of-speech tagger when no annotation is available.

The forward–backward algorithm is referred to as an unsupervised learning
method, because no additional information is available except the text. This is op-
posed to supervised learning, when the algorithm has access to some sort of refer-
ence annotation.

Informal Presentation. The idea of the forward–backward algorithm is to guess
initial estimates to P (ti|ti−1) and P (wi|ti) and tag the corpus. Once we have a
tagged corpus, we can derive new estimates of P (wi|ti) and P (ti|ti−1) that we will
use to retag the corpus. We repeat the process until it converges (Table 7.6).

However, we have no guarantee that the algorithm converges, and when it con-
verges, we can also hit a local maximum. In the latter case, the learning procedure
will stop without finding correct figures. This is the drawback of this method. For this
reason some quantity of hand-annotated data is always preferrable to a raw corpus
(Merialdo 1994).

The Algorithm. In the presentation above, we had to tag the text before we could
derive new estimates of probabilities P (ti|ti−1) and P (wi|ti), or more generally aij

and bj(ot). In fact, we can avoid the tagging stage. The coefficients can be com-
puted directly using the forward procedure. We will reestimate âij at step n of the
estimation process from estimates aij at step n − 1.
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Table 7.6. Iterative estimation of P (ti|ti−1) (figures are fictitious).

Steps Estimates used to tag the corpus Estimates derived from the
tagged corpus

Initial estimates
P (pronoun|pronoun) = 0.2
P (art|pronoun) = 0.2
P (verb|pronoun) = 0.6

We tag the corpus
and we derive new
estimates.

P (pronoun|pronoun) = 0.15
P (art|pronoun) = 0.05
P (verb|pronoun) = 0.8

Second estimates
P (pronoun|pronoun) = 0.15
P (art|pronoun) = 0.05
P (verb|pronoun) = 0.8

We retag the corpus
and we derive esti-
mates.

P (pronoun|pronoun) = 0.18
P (art|pronoun) = 0.02
P (verb|pronoun) = 0.9

Third estimates
P (pronoun|pronoun) = 0.18
P (art|pronoun) = 0.02
P (verb|pronoun) = 0.9

The algorithm idea is to consider one observation – one word – and then to aver-
age it on all the other observations – the whole sentence. For one specific observation
bj(ot+1) at time t + 1, corresponding here to the word of index t + 1, the transition
probability from state st = qi to state st+1 = qj corresponds to

ξt(i, j) = P (st = qi, st+1 = qj |O, λ),

=
P (st=qi,st+1=qj ,O|λ)

P (O|λ) ,

=
P (st=qi,st+1=qj ,O|λ)P

1≤i≤N

P

1≤j≤N

P (st=qi,st+1=qj ,O|λ) .

We can use the forward and backward probilities to determine the estimate. Fig-
ure 7.8 shows how to introduce them in the equation.

We have:

ξt(i, j) =
αt(i)aijbj(ot+1)βt+1(j)

N∑
i=1

N∑
j=1

αt(i)aijbj(ot+1)βt+1(j)

.

We denote γt(i) =
N∑

j=1

ξt(i, j) the probability to be in state qi at time t.

To consider all the observations, we sum ξt(i, j) from t = 1 to t = T −1. The ex-

pected number of transitions from state qi to state qj is
T−1∑
t=1

ξt(i, j), and the expected
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t – 1 t 

q1

q2

qk

qN

qi

αt(i)

t + 2t + 1

qj

βt+1(j)

aijbj(ot+1)

Fig. 7.8. Transition from state qi at time t to state qj at time t+1 with observation ot+1. After
Rabiner (1989).

number of transitions from state qi is
T−1∑
t=1

γt(i). The last sum also corresponds to the

number of times we are in state qi. We derive:

• The new estimate of aij :

âij =
expected number of transitions from state qi to state qj

expected number of transitions from state qi

,

=

T−1P

t=1

ξt(i,j)

T−1P

t=1

γt(i)

.

• The initial state estimates πi = γ1(i).
• The observation estimates:

b̂i(vk) =
expected number of times in state qi and observing symbol vk

expected number of times in state qi

,

=
ot=vk,1≤t≤T

TP

t=1

γt(i)

TP

t=1

γt(i)

.

7.3 Tagging with Decision Trees

So far, we used the maximum likelihood to estimate part of speech and word proba-
bilities. We can replace it with decision trees induced from an annotated corpus. The
tagging performance could be superior when the training set is small.

TreeTagger (Schmid 1994, 1995) is a stochastic tagger that replaces the max-
imum likelihood estimate with a binary decision tree to estimate P (ti|ti−2, ti−1).
Figure 7.9 shows an example of an imaginary tree where the conditional probability
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P (NN |DET, ADJ) is read from the tree by examining t−1 and t−2, here ADJ
and DET , respectively. The probability estimate is 0.70.

Tag−1=ADJ

Tag−1=NN Tag−2=DET

Tag−2=ADJ
NN 70%
ADJ 10%

no

no yes

yes

no yes

no yes

Fig. 7.9. A decision tree to estimate POS frequencies where is a noun, DET , a determiner,
and ADJ , an adjective. After Schmid (1994).

The decision tree is built from a training set of POS trigrams t−2, t−1, t0 ex-
tracted from an annotated corpus. The condition set is t−i = v, with i ∈ {1, 2} and
v ∈ T , where T is the tagset.

The idea is to use the entropy of the POS trigams where the random variable is
t0. The entropy is then defined as:

−
∑
t0∈T

P (t0) log2 P (t0).

If the total number of tokens is N , the entropy is estimated as:

−
∑
t0∈T

C(t0)

N
log2

C(t0)

N
.

The decision tree minimizes the information it needs to identify the third tag,
t0, given the two preceding tags, t−2 and t−1. This reflects the minimal amount of
information brought by the third tag of a trigram.

To find the root node, the algorithm creates all the possible partitions of the train-
ing set according to the values of t−2 and t−1. It computes the weighted average of
the entropy of the positive and negative examples. The root condition corresponds to
the values i and v with i ∈ {1, 2} and v ∈ T that minimize
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− p
p+n

∑
t0∈T

C(t0,t−i=v)
p log2

C(t0,t−i=v)
p − n

p+n

∑
t0∈T

C(t0,t−i �=v)
n log2

C(t0,t−i �=v)
n ,

where p is the count of the trigrams that pass the test to be the root condition, and n is
the count of trigrams that do not pass the test. C(t0, t−1 = v) is the count of trigrams
t−2, t−1, t0 that pass the test and where the third tag is t0, and C(t0, t−1 �= v) the
count of trigrams that do not pass the test and where the third tag is t0.

The algorithm stops expanding the tree and creates a leaf when the next node
would gather a number of positive or negative trigrams below a certain threshold, 2,
for example.

7.4 Unknown Words

For stochastic taggers, the main issue to tag unknown words is to estimate P (w|t).
Carlberger and Kann (1999) proposed to use suffixes or more precisely word endings
to compute the estimate. They counted the number of word types with common word
endings of length i, C(wend−i, t), for each tag t in the tagset, with i ranging from 0
to L. The estimate P (w|t) for unknown word is then

Pest(w|t) =

L∑
i=0

αi
C(wend−i, t)∑

τ∈tagset C(wend−i, τ)
.

where αi are parameters optimized on the training set. They tried their formula with
increasing values of L, and they found that tagging accuracy did not improve for
L > 5.

If L = 0, Pest(w|t) = C(t)P
τ∈tagset C(τ) corresponds to the proportion of part of

speech t among the word types.

7.5 An Application of the Noisy Channel Model: Spell Checking

An interesting application of the noisy channel model is to help a spell checker rank
candidate corrections (Kernighan et al. 1990). In this case, the source sequence is
a correct string c that produces an incorrect one called the typo t through the noisy
channel. The most likely correction is modeled as

ĉ = arg maxP (c)P (t|c).

Possible typos are deletion, insertion, substitutions, and transpositions. In their
original paper, Kernighan et al. allowed only one typo per word. Typo frequencies
are estimated from a corpus where:

• del(xy) is the number of times the characters xy in the correct word were typed
x in the training set.

• ins(xy) is the number of times x is typed as xy in the training set.
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• sub(xy) is the number of times the character x is typed y.
• trans(xy) is the number of times xy is typed as yx in the training set.

P (t|c) is estimated as:

P (t|c) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

del(cp−1,cp)
C(cp−1,cp) if deletion,
ins(cp−1,tp)

C(cp−1)
if insertion,

sub(tp,cp)
C(cp) if substitution,

trans(cp,cp+1)
C(cp−1,cp) if transposition.

where cp is the pth character of c, and tp the pth of t.
The algorithm needs four confusion matrices, of size 26 × 26 for English, that

contain the frequencies of deletions, insertions, substitutions, and transpositions. The
del matrix will give the counts del(xy), how many times y was deleted after x for all
the letter pairs, for instance, del(ab).

The matrices can be obtained through hand-annotation or automatically. Hand-
annotation is expensive, and Kernighan et al. described an algorithm to train auto-
matically the matrices. It resembles the forward–backward procedure (Sect. 7.2.7).

The training phase initializes the matrices with equal values and applies the
spelling algorithm to generate a correct word for each typo in the text. The pairs
typo/corrected word are used to update the matrices. The algorithm is repeated on
the original text to obtain new pairs and is iterated until the matrices converge.

7.6 A Second Application: Language Models for Machine
Translation

Natural language processing was born with machine translation, which was one of its
first applications. Facing competition from Russia after the Second World War, the
government of the United States decided to fund large-scale translation programs to
have a quick access to documents written in Russian. It started the field and resulted
in programs like SYSTRAN, which are still in use today.

Given the relatively long history of machine translation, a variety of methods
have been experimented on and applied. In this section, we outline how language
models and statistical techniques can be used to translate a text from one language
into another one. IBM teams pioneered statistical models for machine translation in
the early 1990s (Brown et al. 1993). Their work is still the standard reference.

7.6.1 Parallel Corpora

Parallel corpora are the main resource of statistical language translation. Administra-
tive or parliamentary texts of multilingual countries are widely used because they are
easy to obtain and are often free. The Canadian Hansard or the European Parliament
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Table 7.7. Parallel texts from the Swiss federal law on milk transportation.

German French Italian
Art. 35 Milchtransport Art. 35 Transport du lait Art. 35 Trasporto del latte
1 Die Milch ist schonend
und hygienisch in den
Verarbeitungsbetrieb zu
transportieren. Das Trans-
portfahrzeug ist stets sauber
zu halten. Zusammen mit der
Milch dürfen keine Tiere und
milchfremde Gegenstände
transportiert werden, welche
die Qualität der Milch
beeinträchtigen können.

1 Le lait doit être transporté
jusqu’à l’entreprise de trans-
formation avec ménagement
et conformément aux normes
d’hygiène. Le véhicule de
transport doit être toujours
propre. Il ne doit transporter
avec le lait aucun animal ou
objet susceptible d’en altérer
la qualité.

1 Il latte va trasportato verso
l’azienda di trasformazione
in modo accurato e igienico.
Il veicolo adibito al trasporto
va mantenuto pulito. Con
il latte non possono essere
trasportati animali e oggetti
estranei, che potrebbero
pregiudicarne la qualità.

2 Wird Milch ausserhalb
des Hofes zum Abtransport
bereitgestellt, so ist sie zu
beaufsichtigen.

2 Si le lait destiné à être
transporté est déposé hors de
la ferme, il doit être placé
sous surveillance.

2 Se viene collocato fuori
dall’azienda in vista del
trasporto, il latte deve essere
sorvegliato.

3 Milchpipelines sind nach
den Anweisungen des
Herstellers zu reinigen und
zu unterhalten.

3 Les lactoducs des exploita-
tions d’estivage doivent être
nettoyés et entretenus con-
formément aux instructions
du fabricant.

3 I lattodotti vanno puliti e
sottoposti a manutenzione
secondo le indicazioni del
fabbricante.

proceedings are examples of them. Table 7.7 shows an excerpt of the Swiss federal
law in German, French, and Italian on the quality of milk production.

The idea of machine translation with parallel texts is simple: given a sentence, a
phrase, or a word in a source language, find its equivalent in the target language.
The translation procedure splits the text to translate into fragments, finds a correspon-
dence for each source fragment in the parallel corpora, and composes the resulting
target pieces to form a translated text. Using the titles in Table 7.7, we can build pairs
from the phrases transport du lait ‘milk transportation’ in French, Milchtransport in
German, and trasporto del latte in Italian.

The idea of translating with the help of parallel texts is not new and has been
applied by many people. A notable example is the Egyptologist and linguist Jean-
François Champollion, who used the famous Rosetta stone, an early parallel text, to
decipher Egyptian hieroglyphs from Greek.

7.6.2 Alignment

The parallel texts must be aligned before using them in machine translation. This
corresponds to a preliminary segmentation and mark-up that determines the cor-
responding paragraphs, sentences, phrases, and words across the texts. Inside sen-
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tences, aligned fragments are called beads. Alignment of texts in Table 7.7 is made
easier because paragraphs are numbered and have the same number of sentences in
each language. This is not always the case, however, and some texts show a signifi-
cantly different sentence structure.

Gale and Church (1993) describe a simple and effective method based on the idea
that

“longer sentences in one language tend to be translated into longer sentences
in the other language, and that shorter sentences tend to be translated into
shorter sentences.”

Their method generates pairs of sentences from the target and source texts, assigns
them a score, which corresponds to the difference of lengths in characters of the
aligned pairs, and uses dynamic programming to find the maximum likelihood align-
ment of sentences.

The sentences in the source language are denoted si, 1 ≤ i ≤ I , and the sen-
tences in the target language ti, 1 ≤ i ≤ J . D(i, j) is the minimum distance between
sentences s1, s2, ..., si and t1, t2, ..., tj , and d(source1, target1; source2, target2)
is the distance function between sentences. The algorithm identifies six possible
cases of alignment through insertion, deletion, substitution, expansion, contraction,
or merger. They are expressed by the formula below:

D(i, j) = min

⎛
⎜⎜⎜⎜⎜⎜⎝

D(i, j − 1) + d(0, tj ; 0, 0)
D(i − 1, j) + d(si, 0; 0, 0)
D(i − 1, j − 1) + d(si, tj ; 0, 0)
D(i − 1, j − 2) + d(si, tj ; 0, tj−1)
D(i − 2, j − 1) + d(si, tj ; si−1, 0)
D(i − 2, j − 2) + d(si, tj ; si−1, tj−1)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The distance function is defined as − log P (alignment|δ), with δ = (l2 −
l1c)/

√
l1s2, and where l1 and l2 are the lengths of the sentences under considera-

tion, c the average number of characters in the source language L2 per character in
the target language L1, and s2 its variance. Gale and Church (1993) found a value
of c of 1.06 for the pair French–English and 1.1 for German–English. This means
that French and German texts are longer than their English counterparts: 6% longer
for French and 10% for German. They found s2 = 7.3 for German–English and
s2 = 5.6 for French–English.

Using Bayes’ theorem, we can derive a new distance function:

− logP (δ|alignment)− log P (alignment).

Gale and Church (1993) estimated the probability P (alignment) of their six pos-
sible alignments with these figures: substitution 1–1: 0.89, deletion and substitution
0–1 or 1–0: 0.0099, expansion and contraction 2–1 or 1–2: 0.089, and merger 2–2:
0.011. They rewrote P (δ|alignment) as 2(1−P (|δ|)), which can be computed from
statistical tables. See Gale and Church’s original article.
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Alignment of words and phrases uses similar techniques, however, it is more
complex. Figures 7.10 and 7.11 show examples of alignment from Brown et al.
(1993).

And1 the2 program3 has4 been5 implemented6

Le1 programme2 a3 été4 mis5 en6 application7

Fig. 7.10. Alignment. After Brown et al. (1993).

The1 poor2 don’t3 have4 any5 money6

Les1 pauvres2 sont3 démunis4

Fig. 7.11. A general alignment. After Brown et al. (1993).

7.6.3 Translation

Using a statistical formulation, given a source text, S, the most probable target text,
T , corresponds to argmax

T
P (T |S), which can be rewritten as argmax

T
P (T )P (S|T ).

The first term, P (T ), is a language model, for instance, a trigram model, and the
second one, P (S|T ), is the translation model. In their original article, Brown et al.
(1993) used French as the source language and English as the target language with
the notations F and E. They modeled the correspondence between a French string
f = f1, f2, ..., fm and an English string, e = e1, e2, ..., el.

The first step is to rewrite the translation model as

P (f |e) =
∑

a

P (f, a|e),

where a is the alignment between the source and target sentences and where each
source word has one single corresponding target word. The target word can be the
empty string. The alignment is represented by the string a = a1, a2, ..., am, where
aj is the position of the corresponding word in the English string as aj = i, which
denotes that word j in the French string is connected to word i in the English string.
When there is no connection aj = 0. In the example of Fig. 7.10, we have the
alignment a = (2, 3, 4, 5, 6, 6, 6).
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Brown et al. (1993) proposed five models ranging from relatively simple to pretty
elaborate to work out concretely the formula. In their simplest model 1, they intro-
duce the simplification:

P (f, a|e) =
ε

(l + 1)m

m∏
j=1

t(fj |eaj
),

where t(fj|eaj
) is the translation probability of fj given eaj

and ε a small, fixed
number.

Using the example in Fig. 7.10, the product in

P (Le programme a été mis en application, a|And the program has been implemented)

for a = (2, 3, 4, 5, 6, 6, 6) corresponds to the terms:

t(Le|the) × t(programme|program) × t(a|has) × t(été|been)×
t(mis|implemented) × t(en|implemented) × t(application|implemented)

where t values are derived from aligned corpora. Summing over all the possible
alignments, we obtain the probability of the translation of Le programme a été mis
en application into And the program has been implemented.

7.7 Further Reading

A complete introduction to stochastic methods can be found in Charniak (1993). It
notably includes a description of the Viterbi algorithm that enables users to speed the
search of the optimal part-of-speech sequence. Magerman (1995) noted some errors
in Charniak’s book that are worth being corrected. Carlberger and Kann (1999) is a
very readable and complete text to implement a stochastic tagger.

Brown et al. (1993) started the field on statistical translation models. The orig-
inal article is worth reading. GIZA++ (Och and Ney 2000), a free software to train
translation models, is available from: http://www.fjoch.com/GIZA++.html.

Exercises

7.1. Implement the stochastic part-of-speech tagging algorithm in Prolog or Perl us-
ing unigrams.

7.2. Implement the stochastic part-of-speech tagging algorithm in Prolog or Perl us-
ing bigrams.

7.3. Implement the Viterbi search for the bigram part-of-speech tagger.

7.4. Implement a spell checker in Prolog or Perl.
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Phrase-Structure Grammars in Prolog

8.1 Using Prolog to Write Phrase-Structure Grammars

This chapter introduces parsing using phrase-structure rules and grammars. It uses
the Definite Clause Grammar (DCG) notation (Pereira and Warren 1980), which is
a feature of virtually all Prologs. The DCG notation enables us to transcribe a set of
phrase-structure rules directly into a Prolog program.

Prolog was designed from the very beginning for language processing. It has
built-in search and unification mechanisms that make it naturally suited to implement
formal models of linguistics with elegance and concision. Parsing with DCG rules
comes down to a search in Prolog. Prolog recognizes the rules at load time and
translates them into clauses. Its engine automatically carries out the parse without
the need for additional programming.

Many natural language processing systems, both in academia and in industry,
have been written in Prolog. Other languages like Perl, Python, Java, or C++ are now
widely used in language engineering applications. However, much programming is
often necessary to implement an idea or a linguistic theory. Prolog gets to the heart
of the problem in sometimes only a few lines of code. It thus enables us to capture
fundamental concepts while setting aside coding chores.

8.2 Representing Chomsky’s Syntactic Formalism in Prolog

8.2.1 Constituents

Chomsky’s syntactic formalism (1957) is based on the concept of constituents. Con-
stituents can be defined as groups of words that fit together and act as relatively
independent syntactic units. We shall illustrate this idea with the sentences:

The waiter brought the meal.
The waiter brought the meal to the table.
The waiter brought the meal of the day.



186 8 Phrase-Structure Grammars in Prolog

Phrases such as the waiter, the meal, of the day, or brought the meal of the day
are constituents because they sound natural. On the contrary, the groups of words
meal to or meal of the sound odd or not complete and therefore are not constituents.

The set of constituents in a sentence includes all the phrases that meet this de-
scription. Simplest constituents are the sentence’s words that combine with their
neighbors to form larger constituents. Constituents combine again and extend up to
the sentence itself. Constituents can be pictured by boxed groups of sentence chunks
(Figs. 8.1 and 8.2).

The waiter brought the meal to the table

Fig. 8.1. The constituent structure of The waiter brought the meal to the table.

The waiter brought the meal of the day

Fig. 8.2. The constituent structure of The waiter brought the meal of the day.

In Fig. 8.2, the phrase the meal of the day fits in a box, while in Fig. 8.1, the
meal and to the table are separated. The reason is semantic. The meal of the day can
be considered as a single entity, and so of the day is attached to the meal. Both can
merge in a single constituent and hence fit in the same box. To the table is related
to the sentence verb rather than to the meal: this phrase specifies where the waiter
brought something. That is why the next enclosing box frames the phrase brought
the meal to the table and not the meal to the table.

Constituents are organized around a headword that usually has the most signif-
icant semantic content. The constituent category takes its name from the headword
part of speech. So, the waiter, the meal, the day, and the meal of the day are noun
phrases (NP s), and brought the meal of the day is a verb phrase (V P ). Prepositional
phrases (PP s) are noun phrases beginning with prepositions such as to the table and
of the day.

8.2.2 Tree Structures

Tree structures are an alternate representation to boxes where constituent names an-
notate the tree nodes. The symbol S denotes the whole sentence and corresponds
to the top node. This node divides into two branches that lead to the NP and V P
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nodes, and so on. Figure 8.3 shows the structure of The waiter brought the meal to
the table, and Fig. 8.4 the structure of The waiter brought the meal of the day.

S

NP V P

Det Noun V erb NP PP

Det Noun Prep NP

Det Noun

The waiter brought the meal to the table

Fig. 8.3. Tree structure of The waiter brought the meal to the table.

S

NP V P

Det Noun V erb NP

NP PP

Det Noun Prep NP

Det Noun

The waiter brought the meal of the day

Fig. 8.4. Tree structure of The waiter brought the meal of the day.

8.2.3 Phrase-Structure Rules

Phrase-structure rules (PS rules) are a device to model constituent structures. PS rules
rewrite the sentence or phrases into a sequence of simpler phrases that describe the
composition of the tree nodes. More precisely, a PS rule has a left-hand side that is
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the parent symbol and a right-hand side made of one, two, or more symbols labeling
the downward-connected nodes. For instance, rule

S → NP VP

describes the root node of the tree: a sentence can consist of a noun phrase and a verb
phrase.

A phrase-structure grammar is a set of PS rules that can decompose sentences and
phrases down to the words and describe complete trees. The phrase categories occur-
ring in Figs. 8.3 and 8.4 are sentence, noun phrase, verb phrase, and prepositional
phrase. In the phrase-structure formalism, these categories are called the nontermi-
nal symbols. Parts of speech or lexical categories here are determiners (or articles),
nouns, verbs, and prepositions. PS rules link up categories to rewrite the sentence
and the phrases until they reach the words – the terminal symbols. Table 8.1 shows
a grammar to parse the sentences in Figs. 8.1 and 8.2.

Table 8.1. A phrase-structure grammar.

Phrases Lexicon
S → NP VP
NP → Determiner Noun
NP → NP PP
VP → Verb NP
VP → Verb NP PP
PP → Preposition NP

Determiner → the
Noun → waiter
Noun → meal
Noun → table

Noun → day
Verb → brought
Preposition → to
Preposition → of

The first rule in Table 8.1 means that the sentence consists of a noun phrase fol-
lowed by a verb phrase. The second and third rules mean that a noun phrase can
consist either of a determiner and a noun, or a noun phrase followed by a preposi-
tional phrase, and so on. The left constituent is called the mother of the rule, and
the right constituents are its expansion or its daughters. The sequence of grammar
rules applied from the sentence node to get to the words is called a derivation.

8.2.4 The Definite Clause Grammar (DCG) Notation

The translation of PS rules into DCG rules is straightforward. The DCG notation uses
the -->/2 built-in operator to denote that a constituent can consist of a sequence of
simpler constituents. DCG rules look like ordinary Prolog clauses except that the op-
erator -->/2 separates the head and body instead of :-/2. Let us use the symbols
s, np, vp, and pp to represent phrases. The grammar in Table 8.1 corresponds to
DCG rules:

s --> np, vp.
np --> det, noun.
np --> np, pp.
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vp --> verb, np.
vp --> verb, np, pp.
pp --> prep, np.

DCG rules encode the vocabulary similarly. The left-hand side of the rule is the
part of speech, and the right-hand side is the word put inside a list – enclosed between
brackets:

det --> [the].
det --> [a].
noun --> [waiter].
noun --> [meal].
noun --> [table].
noun --> [day].
verb --> [brought].
prep --> [to].
prep --> [of].

The Prolog search mechanism checks whether a fact is true or generates all the
solutions. Applied to parsing, the search checks whether a sentence is acceptable to
the grammar or generates all the sentences accepted by this grammar.

Once the Prolog interpreter has consulted the DCG rules, we can query it using
the input word list as a first parameter and the empty list as a second. Both queries:

?- s([the, waiter, brought, the, meal, to, the,
table], []).
Yes

?- s([the, waiter, brought, the, meal, of, the,
day], []).
Yes

succeed because the grammar accepts the sentences.
In addition to accepting sentences, the interpreter finds all the sentences gener-

ated by the grammar. It corresponds to the so-called syntactically correct sentences:

?-s(L, []).
L = [the, waiter, brought, the, waiter] ;
L = [the, waiter, brought, the, meal] ;
L = [the, waiter, brought, the, table] ;
...

In the grammar above, the two first lexical rules mean that a determiner can be
either the or a. This rule could have been compacted in a single one using Prolog’s
disjunction operator ;/2 as:

det --> [the] ; [a].
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However, like for Prolog programs, using the semicolon operator sometimes im-
pairs the readability and is not advisable.

In our grammar, nonterminal symbols of lexical rules are limited to a single word.
They can also be a list of two or more words as in:

prep --> [in, front, of].

which means that the word sequence in front of corresponds to a preposition.
DCG rules can mix terminal and nonterminal symbols in their expansion as in:

np --> noun, [and], noun.

Moreover, Prolog programs can mix Prolog clauses with DCG rules, and DCG
rules can include Prolog goals in the expansion. These goals are enclosed in braces:

np --> noun, [and], noun, {prolog_code}.

as, for example:

np -->
noun, [and], noun,
{write(’I found two nouns’), nl}.

8.3 Parsing with DCGs

8.3.1 Translating DCGs into Prolog Clauses

Prolog translates DCG rules into Prolog clauses when the file is consulted. The trans-
lation is nearly a mapping because DCG rules are merely a notational variant of Pro-
log rules and facts. In this section, we will first consider a naïve conversion method.
We will then outline how most common interpreters adhering to the Edinburgh’s
Prolog (Pereira 1984) tradition carry out the translation.

A tentative translation of DCG rules in Prolog clauses would add a variable to
each predicate. The rule

s --> np, vp.

would then be converted into the clause

s(L) :- np(L1), vp(L2) ...

so that each variable unifies with the word list corresponding to the predicate name.
With this kind of translation and the input sentence The waiter brought the meal,
variable

• L would match the input list [the, waiter, brought, the, meal];
• L1 would match the noun phrase list [the, waiter]; and
• L2 would match the verb phrase [brought, the, meal].
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To be complete, the Prolog clause requires an append/3 predicate at the end to
link L1 and L2 to L:

s(L) :- np(L1), vp(L2), append(L1, L2, L).

Although this clause might seem easy to understand, it would not gracefully scale
up. If there were three daughters, the rule would require two appends, and if there
were four daughters, the rule would then need three appends, and so on.

In most Prologs, the translation predicate adds two variables to each DCG symbol
to the left-hand side and the right-hand side of the rule. The DCG rule

s --> np, vp.

is actually translated into the Prolog clause

s(L1, L) :- np(L1, L2), vp(L2, L).

where L1, L2, and L are lists of words. As with the naïve translation, the clause ex-
presses that a constituent matching the head of the rule is split into subconstituents
matching the goals in the body. However, constituent values correspond to the dif-
ference of each pair of arguments.

• The waiter brought the meal corresponds to the s symbol and unifies with L1\L,
where L1\L denotes L1 minus L.

• The waiter corresponds to the np symbol and unifies with L1\L2.
• brought the meal corresponds to the vp symbol and unifies with L2\L.

In terms of lists, L1\L corresponds to [the, waiter, brought, the,
meal]; L1\L2 corresponds to the first noun phrase [the, waiter]; and L2\L
corresponds to the verb phrase and [brought, the, meal].

L1 is generally set to the input sentence and L to the empty list, [], when query-
ing the Prolog interpreter, as in:

?- s([the, waiter, brought, the, meal], []).
Yes

So the variables L1 and L2 unify respectively with [the, waiter, brought,
the, meal] and [brought, the, meal].

The lexical rules are translated the same way. The rule

det --> [the].

is mapped onto the fact:

det([the | L], L).

Sometimes, terminal symbols are rewritten using the ’C’/3 (connects) built-in
predicate. In this case, the previous rule could be rewritten into:

det(L1, L) :- ’C’(L1, the, L).



192 8 Phrase-Structure Grammars in Prolog

The ’C’/3 predicate links L1 and L so that the second parameter is the head of L1
and L, its tail. ’C’/3 is defined as:

’C’([X | Y], X, Y).

In many Prologs, the translation of DCG rules into Prolog clauses is carried out by a
predicate named expand_term/2.

8.3.2 Parsing and Generation

DCG parsing corresponds to Prolog’s top-down search that starts from the start sym-
bol, s. Prolog’s search mechanism rewrites s into subgoals, here np and vp. Then
it rewrites the leftmost symbols starting with np and goes down until it matches the
words of the input list with the words of the vocabulary. If Prolog finds no solution
with a set of rules, it backtracks and tries other rules.

Let us illustrate a search tracing the parser with the sentence The waiter brought
the meal in Table 8.2. The interpreter is launched with the query

?- s([the, waiter, brought, the, meal], []).

The Prolog clause

s(L1, L) :- np(L1, L2), vp(L2, L).

is called first (Table 8.2, line 1). The leftmost predicate of the body of the rule, np,
is then tried. Rules are examined in the order they occur in the file, and

np(L1, L) :- det(L1, L2), noun(L2, L).

is then called (line 2). The search continues with det (line 3) that leads to the termi-
nal rules. It succeeds with the fact

det([the | L], L).

and unifies L with [waiter, brought, the, meal] (line 4). The search
skips from det/2 to noun/2 in the rule

np(L1, L) :- det(L1, L2), noun(L2, L).

noun/2 is searched the same way (lines 5 and 6). np succeeds and returns with L
unified with [brought, the, meal] (line 7). The rule

s(L1, L) :- np(L1, L2), vp(L2, L).

proceeds with vp (line 8) until s succeeds (line 18).
The search is pictured in Fig. 8.5.
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Table 8.2. Trace of The waiter brought the meal.

1 Call: s([the, waiter, brought, the, meal], [])
2 Call: np([the, waiter, brought, the, meal], _2)
3 Call: det([the, waiter, brought, the, meal], _6)
4 Exit: det([the, waiter, brought, the, meal], [waiter,

brought, the, meal])
5 Call: noun([waiter, brought, the, meal], _2)
6 Exit: noun([waiter, brought, the, meal], [brought,

the, meal])
7 Exit: np([the, waiter, brought, the, meal], [brought,

the, meal])
8 Call: vp([brought, the, meal], [])
9 Call: verb([brought, the, meal], _10)
10 Exit: verb([brought], [the, meal])
11 Call: np([the, meal], [])
12 Call: det([the, meal], _11)
13 Exit: det([the, meal], [meal])
14 Call: noun([meal], [])
15 Exit: noun([meal], [])
16 Exit: np([the, meal], [])
17 Exit: vp([brought, the, meal], [])
18 Exit: s([the, waiter, brought, the, meal], [])

S

NP V P

Det Noun V erb NP

Det Noun

The waiter brought the meal

Fig. 8.5. The DCG parsing process.

8.3.3 Left-Recursive Rules

We saw that the DCG grammar in Table 8.1 accepts and generates correct sentences,
but what about incorrect ones? A first guess is that the grammar should reject them.
In fact, querying this grammar with The brought the meal (*) never returns or even
crashes Prolog. This is due to the left-recursive rule

np --> np, pp.

Incorrect strings, such as:
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The brought the meal (*)

trap the parser into an infinite loop. Prolog first tries to match The brought to

np --> det, noun.

Since brought is not a noun, it fails and tries the next rule

np --> np, pp.

Prolog calls np again, and the first np rule is tried anew. The parser loops hope-
lessly.

The classical method to get rid of the left-recursion is to use an auxiliary rule
with an auxiliary symbol (ngroup), which is not left-recursive, and to rewrite the
noun phrase rules as:

ngroup --> det, noun.
np --> ngroup.
np --> ngroup, pp.

When a grammar does not contain left-recursive rules, or once left-recursion has
been removed, any sentence not accepted by the grammar makes Prolog fail:

?- s([the, brought, the, meal, to, the, table], []).
No

8.4 Parsing Ambiguity

The tree structure of a sentence reflects the search path that Prolog is traversing.
With the rule set we used, verb phrases containing a prepositional phrase can be
parsed along to two different paths. The rules

vp --> verb, np.
np --> np, pp.

give a first possible path. Another path corresponds to the rule

vp --> verb, np, pp.

This alternative corresponds to a syntactic ambiguity.
Two parse trees reflect the result of a different syntactic analysis for each sen-

tence. Parsing

The waiter brought the meal to the table

corresponds to the trees in Figs. 8.3 and 8.6. Parsing

The waiter brought the meal of the day
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S

NP V P

Det Noun V erb NP

NP PP

Det Noun Prep NP

Det Noun

The waiter brought the meal to the table

Fig. 8.6. A possible parse tree for The waiter brought the meal to the table.

S

NP V P

Det Noun V erb NP PP

Det Noun Prep NP

Det Noun

The waiter brought the meal of the day

Fig. 8.7. A possible parse tree for The waiter brought the meal of the day.

corresponds to the trees in Figs. 8.4 and 8.7.
In fact, only Figs. 8.3 and 8.4 can be viewed as correct because the prepositional

phrases attach differently in the two sentences. In

The waiter brought the meal to the table

the object is the meal that the waiter brings to a specific location, the table. These
are two distinct entities. In consequence, the phrase to the table is a verb adjunct and
must be attached to the verb phrase node.

In the sentence

The waiter brought the meal of the day
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the verb object is the meal of the day, which is an entity in itself. The phrase of the
day is a postmodifier of the noun meal and must be attached to the noun phrase
node.

When we hear such ambiguous sentences, we unconsciously retain the one that
is acceptable from a pragmatic viewpoint. Prolog does not have this faculty, and the
parser must be hinted. It can be resolved by considering verb, preposition, and noun
types using logical constraints or statistical methods. It naturally requires adding
some more Prolog code. In addition, sentences such as

I saw a man with a telescope

remain ambiguous, even for humans.

8.5 Using Variables

Like Prolog, DCG symbols can have variables. These variables can be used to imple-
ment a set of constraints that may act on words in a phrase. Such constraints govern,
for instance, the number and gender agreement, the case, and the verb transitivity.
Variables can also be used to get the result from a parse. They enable us to build the
parse tree and the logical form while parsing a sentence.

DCG variables will be kept in their Prolog predicate counterpart after consulting.
Variables of a DCG symbol appear in front of the two list variables that are added by
expand_term/2 while building the Prolog predicate. That is, the DCG rule

np(X, Y, Z) --> det(Y), noun(Z).

is translated into the Prolog clause

np(X, Y, Z, L1, L) :-
det(Y, L1, L2),
noun(Z, L2, L).

8.5.1 Gender and Number Agreement

French and German nouns have a gender and a number that must agree with that
of the determiner and the adjective. Genders in French are masculine and feminine.
German also has a neuter gender. Number is singular or plural. Let us use variables
Gender and Number to represent them in the noun phrase rule and to impose the
agreement:

np(Gender, Number) -->
det(Gender, Number), noun(Gender, Number).

To keep the consistency along with all the rules of the grammar, lexical rules
must also describe the gender and number of words (Table 8.3).

A Prolog query on np with the French vocabulary loaded generates two noun
phrases whose determiner and noun agree in gender:
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Table 8.3. A vocabulary with gender and number.

French German
det(masc, sing) --> [le]. det(masc, sing) --> [der].
det(fem, sing) --> [la]. det(fem, sing) --> [die].
det(_, plur) --> [les]. det(neut, sing) --> [das].
noun(masc, sing) --> [garçon]. det(_, plur) --> [die].
noun(fem,sing) --> [serveuse]. noun(masc, _) --> [’Ober’].

noun(fem,sing) --> [’Speise’].

?- np(Gender, Number, L, []).
Gender = masc, Number = sing, L = [le, garçon];
Gender = fem, Number = sing, L = [la, serveuse];
No

In addition to number and gender, German nouns are marked with four cases:
nominative, dative, genitive, and accusative. Determiner case must agree with that of
the adjective and the noun. To implement the case agreement, let us mark the noun
phrase rule with an extra variable Case.

np(Gender, Number, Case) -->
det(Gender, Number, Case),
adj(Gender, Number, Case),
noun(Gender, Number, Case).

Let us also write a small vocabulary:

det(masc, sing, nominative) --> [der].
det(masc, sing, dative) --> [dem].
det(masc, sing, genitive) --> [des].
det(masc, sing, accusative) --> [den].

adj(masc, sing, nominative) --> [freundliche].
adj(masc, sing, dative) --> [freundlichen].
adj(masc, sing, genitive) --> [freundlichen].
adj(masc, sing, accusative) --> [freundlichen].

noun(masc, _, Case) -->
[’Ober’],
{Case \= genitive}.

noun(masc, _, genitive) --> [’Obers’].

Querying np with the German vocabulary

?- np(G, N, C, L, []).

generates four noun phrases whose determiner, adjective, and noun agree in gender
and case:
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G = masc, N = sing, C = nominative,
L = [der, freundliche, ’Ober’];

G = masc, N = sing, C = dative,
L = [dem, freundlichen, ’Ober’];

G = masc, N = sing, C = genitive,
L = [des, freundlichen, ’Obers’];

G = masc, N = sing, C = accusative,
L = [den, freundlichen, ’Ober’];

No

So far, we have seen agreement within the noun phrase. It can also be applied
to categorize verbs. Some verbs such as sleep, appear, or rushed are never followed
by a noun phrase. These verbs are called intransitive (iv). Transitive verbs such as
bring require a noun phrase after them: the object (tv). We can rewrite two verb
phrase rules to mark transitivity:

vp --> verb(iv).
vp --> verb(tv), np.

verb(tv) --> [brought].
verb(iv) --> [rushed].

8.5.2 Obtaining the Syntactic Structure

We used variables to implement constraints. Variables can also return the parse tree
of a sentence. The idea is to unify variables with the syntactic structure of a con-
stituent while it is being parsed. To exemplify this, let us use a simplified version of
our grammar:

s --> np, vp.
np --> det, noun.
vp --> verb, np.

The parse tree of

The waiter brought the meal

is reflected by the Prolog term

T = s(np(det(the), noun(waiter)),
vp(verb(brought), np(det(the), noun(meal))))

To get this result, the idea is to attach an argument to all the symbols of rules,
where each argument represents the partial parse tree of its corresponding symbol.
Each right-hand-side symbol will have a variable that corresponds to the structure it
matches, and the argument of the left-hand-side symbol will unify with the structure
it has parsed. Each rule carries out a part of the tree construction when it is involved
in the derivation. Let us consider the rule:
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s --> np, vp.

We add two variables to np and vp, respectively NP and VP, that reflect the
partial structure they map. When the whole sentence has been parsed, NP and VP
should be

NP = np(det(the), noun(waiter))

and

VP = vp(verb(brought), np(det(the), noun(meal)))

When NP and VP are unified, s combines them into a term to form the final
structure. This term is s(NP, VP). We obtain the construction of the parse tree by
changing rule

s --> np, vp

into

s(s(NP, VP)) --> np(NP), vp(VP).

The rest of the rules are modified in the same way:

np(np(D, N)) --> det(D), noun(N).
vp(vp(V, NP)) --> verb(V), np(NP).

det(det(the)) --> [the].
det(det(a)) --> [a].

noun(noun(waiter)) --> [waiter].
noun(noun(meal)) --> [meal].
noun(noun(table)) --> [table].
noun(noun(tray)) --> [tray].

verb(verb(bring)) --> [brought].

The query:

?- s(Structure, L, [])

generates all the sentences together with their syntactic structure:

Structure = s(np(det(the), noun(waiter)),
vp(verb(brought), np(det(the), noun(waiter)))),

L = [the, waiter, brought, the, waiter] ;

Structure = s(np(det(the), noun(waiter)),
vp(verb(brought), np(det(the), noun(meal)))),

L = [the, waiter, brought, the, meal] ;
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Structure = s(np(det(the), noun(waiter)),
vp(verb(brought), np(det(the), noun(table)))),

L = [the, waiter, brought, the, table]
...

8.6 Application: Tokenizing Texts Using DCG Rules

We can use DCG rules for many applications other than sentence parsing, which we
exemplify here with a tokenization grammar.

8.6.1 Word Breaking

The first part of a tokenizer takes a character list as an input and breaks it into to-
kens. Let us implement this with a DCG grammar. We start with rules describing
a sequence of tokens (tokens) separated by blanks. Blank characters (blank)
are white spaces, carriage returns, tabulations, or control codes. A token (token)
is a sequence of alphanumeric characters (alphanumerics) or another symbol
(other). Finally, alphanumerics are digits, uppercase letters, lowercase letters, or
accented letters:

tokens(Tokens) --> blank, {!}, tokens(Tokens).
tokens([FirstT | Tokens]) -->
token(FirstT), {!}, tokens(Tokens).

tokens([]) --> [].

% A blank is a white space or a control character
blank --> [B], {B =< 32, !}.

% A token is a sequence of alphanumeric characters
% or another symbol

token(Word) -->
alphanumerics(List), {name(Word, List), !}.

token(Symbol) -->
other(CSymbol), {name(Symbol, [CSymbol]), !}.

% A sequence of alphanumerics is an alphanumeric
% character followed by the rest of alphanumerics
% or a single alphanumeric character.

alphanumerics([L | LS]) -->
alphanumeric(L), alphanumerics(LS).

alphanumerics([L]) --> alphanumeric(L).
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% Here comes the definition of alphanumeric
% characters: digits, uppercase letters without
% accent, lowercase letters without accent,
% and accented characters. Here we only consider
% letters common in French, German, and Swedish

% digits
alphanumeric(D) --> [D], { 48 =< D, D =< 57, !}.

% uppercase letters without accent
alphanumeric(L) --> [L], {65 =< L, L =< 90, !}.

% lowercase letters without accent
alphanumeric(L) --> [L], {97 =< L, L =< 122, !}.

% accented characters
alphanumeric(L) -->
[L], {name(A, [L]), accented(A), !}.

accented(L) :-
member(L,

[’à’, ’â’, ’ä’, ’å’, ’æ, ’ç’, ’é’, ’è’, ’ê’, ’ë’,
’î’, ’ï’, ’ô’, ’ö’, ’œ’, ’ù’, ’û’, ’ü’, ’ß’,
’À’, ’Â’, ’Ä’, ’Å’, ’Æ’, ’Ç’, ’É’, ’È’, ’Ê’, ’Ë’,
’Î’, ’Î’, ’Ï’, ’Ô’, ’Ö’, ’Œ’, ’Ù’, ’Û’, ’Ü’]).

% All other symbols come here
other(Symbol) --> [Symbol], {!}.

Before applying the tokens rules, we need to read the file to tokenize and to
build a character list. We do it with the read_file/2 predicate. We launch the
complete word-breaking program with

?- read_file(myFile, CharList), tokens(TokenList,
CharList, []).

8.6.2 Recognition of Sentence Boundaries

The second role of tokenization is to delimit sentences. The corresponding gram-
mar takes the token list as an input. The sentence list (sentences) is a list of
words making a sentence (words_of_a_sentence) followed by the rest of the
sentences. The last sentence can be a punctuated sentence or a string of words with
no final punctuation (words_without_punctuation). We define a sentence as
tokens terminated by an end punctuation: a period, a colon, a semicolon, an excla-
mation point, or a question mark.
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sentences([S | RS]) -->
words_of_a_sentence(S),
sentences(RS).

% The last sentence (punctuated)
sentences([S]) --> words_of_a_sentence(S).
% Last sentence (no final punctuation)
sentences([S]) --> words_without_punctuation(S).

words_of_a_sentence([P]) -->
end_punctuation(P).

words_of_a_sentence([W | RS]) -->
word(W),
words_of_a_sentence(RS).

words_without_punctuation([W | RS]) -->
word(W),
words_without_punctuation(RS).

words_without_punctuation([W]) --> [W].

word(W) --> [W].

end_punctuation(P) --> [P], {end_punctuation(P), !}.

end_punctuation(P) :-
member(P, [’.’, ’;’, ’:’, ’?’, ’!’]).

We launch the whole tokenization program with

?- read_file(myFile, CharacterList),
tokens(TokenList, CharacterList, []),
sentences(SentenceList, TokenList, []).

8.7 Semantic Representation

8.7.1 λ-Calculus

One of the goals of semantics is to map sentences onto logical forms. In many appli-
cations, this is a convenient way to represent meaning. It is also a preliminary step to
further processing such as determining whether the meaning of a sentence is true or
not.

In some cases, the logical form can be obtained simultaneously while parsing.
This technique is based on the principle of compositionality, which states that it is
possible to compose the meaning of a sentence from the meaning of its parts. We
shall explain this with the sentence
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Bill is a waiter

and its corresponding logical form

waiter(’Bill’).

If Pierre replaces Bill as the waiter, the semantic representation of the sentence
is

waiter(’Pierre’).

This means that the constituent is a waiter retains the same meaning indepen-
dently of the value of the subject. It acts as a property or a function that is applied to
other constituents. This is the idea of compositional analysis: combine independent
constituents to build the logical form of the sentence.

The λ-calculus (Church 1941) is a mathematical device that enables us to repre-
sent intermediate constituents and to compose them gracefully. It is a widely used
tool in compositional semantics. The λ-calculus maps constituents onto abstract
properties or functions, called λ-expressions. Using a λ-expression, the property is a
waiter is represented as

λx.waiter(x)

where λ is a right-associative operator. The transformation of a phrase into a property
is called a λ-abstraction. The reverse operation is called a β-reduction. It is carried
out by applying the property to a value and is denoted

λx.waiter(x)(Bill)

which yields
waiter(Bill)

Since there is no λ character on most computer keyboards, the infix oper-
ator ˆ classically replaces it in Prolog programs. So λx.waiter(x) is denoted
Xˆwaiter(X). λ-expressions are also valid for adjectives, and is fast is mapped
onto Xˆfast(X). A combination of nouns and adjectives, such as is a fast waiter,
is represented as: Xˆ(fast(X), waiter(X)).

While compositionality is an elegant tool, there are also many sentences where it
does not apply. Kick is a frequently cited example. It shows compositional properties
in kick the ball or kick the box. A counter example is the idiom kick the bucket, which
means to die, and where kick is not analyzable alone.

8.7.2 Embedding λ-Expressions into DCG Rules

It is possible to use DCG rules to carry out a compositional analysis. The idea is to
embed λ-expressions into the rules. Each rule features a λ-expression corresponding
to the constituent it can parse. Parsing maps λ-expressions onto constituents rule-by-
rule and builds the semantic representation of the sentence incrementally.
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The sentence we have considered applies the property of being a waiter to a
name: Pierre or Bill. In this sentence, the verb is, as other verbs of being, only links
a name to the predicate waiter(X). So the constituent is a waiter is roughly equiv-
alent to waiter. Then, the semantic representation of common nouns or adjectives is
that of a property: λx.waiter(x). Nouns incorporate their semantic representation
as an argument in DCG rules, as in:

noun(X^waiter(X)) --> [waiter].

As we saw, verbs of being have no real semantic content. If we only consider
these verbs, verb phrase rules only pass the semantics of the complement to the sen-
tence. Therefore, the semantics of the verb phrase is simply that of its noun phrase:

vp(Semantics) --> verb, np(Semantics).

The Semantics variable is unified to Xˆwaiter(X), where X is to represent
the sentence’s subject. Let us write this in the sentence rule that carries out the β-
reduction

s(Predicate) --> np(Subject),
vp(Subject^Predicate).

The semantic representation of a name is just this name:

np(’Bill’) --> [’Bill’].
np(’Mark’] --> [’Mark’].

We complement the grammar with an approximation: we consider that determin-
ers have no meaning. It is obviously untrue. We do it on purpose to keep the program
simple. We will get back to this later:

np(X) --> det, noun(X).
det --> [a].
verb --> [is].

Once the grammar is complete, querying it with a sentence results in a logical
form:

?- s(S, [’Mark’, is, a waiter], []).
S = waiter(’Mark’).

The reverse operation generates a sentence from the logical form:

?- s(waiter(’Bill’), L, []).
L = [’Bill, is, a, waiter].
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8.7.3 Semantic Composition of Verbs

We saw that verbs of being played no role in the representation of a sentence. On the
contrary, other types of verbs, as in

Bill rushed
Mr. Schmidt called Bill

are the core of the sentence representation. They correspond to the principal functor
of the logical form:

rushed(’Bill’)
called(’Mr. Schmidt’, ’Bill’)

Their representation is mapped onto a λ-expression that requires as many argu-
ments as there are nouns involved in the logical form. Rushed in the sentence Bill
rushed is intransitive. It has a subject and no object. It is represented as

X^rushed(X)

where X stands for the subject. This formula means that to be complete the sen-
tence must supply rushed(X) with X = ’Bill’ so that it reduces to rush-
ed(’Bill’).

Called in the sentence Mr. Schmidt called Bill is transitive: it has a subject and
an object. We represent it as

Y^X^called(X, Y)

where X and Y stand respectively for the subject and the object. This expression
means that it is complete when X and Y are reduced.

Let us now examine how the parsing process builds the logical form. When the
parser considers the verb phrase

called Bill

it supplies an object to the verb’s λ-expression. The λ-expression reduces to one
argument, λx.called(x, Bill), which is represented in Prolog by

X^called(X, ’Bill’)

When the subject is supplied, the expression reduces to

called(’Mr. Schmidt’, ’Bill’).

Figure 8.8 shows graphically the composition.
Let us now write a complete grammar accepting both sentences. We add a vari-

able or a constant to the left-hand-side symbol of each rule to represent the con-
stituent’s or the word’s semantics. The verb’s semantics is a λ-expression as de-
scribed previously, and np’s value is a proper noun. The semantic representation
is built compositionally – at each step of the constituent parsing – by unifying the
argument of the left-hand-side symbol.
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s(Semantics) --> np(Subject),
vp(Subject^Semantics).
vp(Subject^Semantics) --> verb(Subject^Semantics).
vp(Subject^Semantics) -->
verb(Object^Subject^Semantics), np(Object).

np(’Bill’) --> [’Bill’].
np(’Mr. Schmidt’) --> [’Mr. Schmidt’].

verb(X^rushed(X)) --> [rushed].
verb(Y^X^called(X, Y)) --> [called].

?- s(Semantics, [’Mr. Schmidt’, called, ’Bill’], []).
Semantics = called(’Mr. Schmidt’, ’Bill’)

In this paragraph, proper nouns were the only noun phrases we considered. We
have set aside common nouns and determiners to simplify the presentation. In addi-
tion, prepositions and prepositional phrases can also be mapped onto λ-expressions
in the same way as verbs and verb phrases. We will examine the rest of semantics in
more detail in Chap. 12.

S

NP VP

Verb

called

NPSem = λy.λx.called(x, y) 

BillMr. Schmidt 

Sem = Bill

Sem = Mr. Schmidt Sem = λx.called(x, Bill) 

Sem = called(Mr. Schmidt, Bill) 

Fig. 8.8. Parse tree with a semantic composition.

8.8 An Application of Phrase-Structure Grammars and a
Worked Example

As we saw in Chap. 1, the Microsoft Persona agent uses a phrase-structure grammar
module to parse sentences and gets a logical form from them. Ball et al. (1997) give
an example of order:

I’d like to hear something composed by Mozart.

that Persona transforms in the logical form:
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like1 (+Modal +Past +Futr)
Dsub: i1 (+Pers1 +Sing)
Dobj: hear1

Dsub: i1
Dobj: something1 (+Indef +Exis +Pers3 +Sing)

Prop: compose1
Dsub: mozart1 (+Sing)
Dobj: something1

Although Persona uses a different method (Jensen et al. 1993), a small set of
DCG rules can parse this sentence and derive a logical form using compositional
techniques. To write the grammar, let us simplify the order and proceed incremen-
tally. The core of the sentence means that the user would like something or some
Mozart. It is easy to write a grammar to parse sentences such as:

I would like something
I would like some Mozart

The sentence and the noun phrase rules are close to those we saw earlier:

s(Sem) --> np(Sub), vp(Sub^Sem).

In anticipation of a possible left-recursion, we use an auxiliary npx symbol to
describe a nonrecursive noun phrase:

npx(SemNP) --> pro(SemNP).
npx(SemNP) --> proper_noun(SemNP).
npx(SemNP) --> det, proper_noun(SemNP).

np(SemNP) --> npx(SemNP).

The verb phrase is slightly different from those of the previous sections because
it contains an auxiliary verb. A possible expansion would consist of the auxiliary and
a recursive verb phrase:

vp --> aux, vp.

Although some constituent grammars are written this way, the treatment of aux-
iliary would is disputable. In some languages – notably in Romance languages – the
conditional auxiliary is rendered by the inflection of the main verb, as in French:
j’aimerais. A better modeling of the verb phrase uses a verb group that corresponds
either to a single verb or to a sequence, including an auxiliary to the left and the main
verb, here

verb_group(SemVG) --> aux(SemAux), verb(SemVG).
verb_group(SemVG) --> verb(SemVG).

vp(SemVP) --> verb_group(SemVP).
vp(SemVP) --> verb_group(Obj^SemVP), np(Obj).
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The vocabulary is also similar to what we saw previously:

verb(Obj^Sub^like(Sub, Obj)) --> [like].
verb(Obj^Sub^hear(Sub, Obj)) --> [hear].

aux(would) --> [would].

pro(’I’) --> [’I’].
pro(something) --> [something].

proper_noun(’Mozart’) --> [’Mozart’].

det --> [some].

This grammar answers queries such as:

?- s(Sem, [’I’, would, like, some, ’Mozart’], []).
Sem = like(’I’, ’Mozart’)

Now let us take a step further toward the original order, and let us add the infini-
tive verb phrase to hear:

I would like to hear something
I would like to hear some Mozart

The infinitive phrase has a structure similar to that of a finite verb phrase except
that it is preceded by the infinitive marker to:

vp_inf(SemVP) --> [to], vp(SemVP).

We must add a new verb phrase rule to the grammar to account for it. Its object
is the subordinate infinitive phrase:

vp(SemVP) --> verb_group(Obj^SemVP), vp_inf(Obj).

The new grammar accepts queries such as:

?- s(Sem, [’I’, would, like, to, hear, some,
’Mozart’], []).

Sem = like(’I’, X^hear(X, ’Mozart’))

In the resulting logical form, the subject of hear is not reduced. In fact, this is
because it is not explicitly indicated in the sentence. This corresponds to an anaphora
within the sentence – an intrasentential anaphora – where both verbs like and hear
implicitly share the same subject.

To solve the anaphora and to understand how Prolog composes the logical forms,
instead of using the variable Obj, let us exhibit all the variables of the λ-expressions
at the verb phrase level. The nonreduced λ-expression for hear is

ObjectHear^SubjectHear^hear(SubjectHear, ObjectHear).
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When the infinitive verb phrase has been parsed, the ObjectHear is reduced and
the remaining expression is

SubjectHear^hear(SubjectHear, ’Mozart’).

The original λ-expression for like is

ObjectLike^SubjectLike^like(SubjectLike, ObjectLike)

where ObjectLike unifies with the λ-expression representing hear. Since both
subjects are identical, λ-expressions can be rewritten so that they share a same vari-
able in SubjectˆSemInf for hear and SemInfˆSubjectˆSemVP for like. The
verb phrase is then:

vp(Subject^SemVP) -->
verb_group(SemInf^Subject^SemVP),
vp_inf(Subject^SemInf).

and the new grammar now solves the anaphora:

?- s(Sem, [’I’, would, like, to, hear, some,
’Mozart’], []).

Sem = like(’I’, hear(’I’, ’Mozart’))

Let us conclude with the complete order, where the track the user requests is
something composed by Mozart. This is a noun phrase, which has a passive verb
phrase after the main noun. We model it as:

np(SemNP) --> npx(SemVP^SemNP), vp_passive(SemVP).

We also need a model of the passive verb phrase:

vp_passive(SemVP) -->
verb(Sub^SemVP), [by], np(Sub).

and of the verb:

verb(Sub^Obj^compose(Sub, Obj)) --> [composed].

Finally, we need to modify the pronoun something so that it features a property:

pro(Modifier^something(Modifier)) --> [something].

Parsing the order with the grammar yields the logical form:

?- s(Sem, [’I’, would, like, to, hear, something,
composed, by, ’Mozart’], []).
Sem = like(’I’, hear(’I’,

X^something(compose(’Mozart’, X))))

which leaves variable X uninstantiated.1 A postprocessor would then be necessary to
associate X with something and reduce it.

1 Prolog probably names it _Gxxx using an internal numbering scheme.
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8.9 Further Reading

Colmerauer (1970, 1978) created Prolog to write language processing applications
and, more specifically, parsers. Pereira and Warren (1980) designed the Definite
Clause Grammar notation, although it is merely a variation on the Prolog syntax.
Most Prolog environments now include a compiler that is based on the Warren Ab-
stract Machine (WAM, Warren 1983). This WAM has made Prolog’s execution very
efficient.

Textbooks on Prolog and natural language processing delve mostly into syntax
and semantics. Pereira and Shieber (1987) provide a good description of phrase-
structure grammars, parsing, and formal semantics. Other valuable books include
Gazdar and Mellish (1989), Covington (1994), and Gal et al. (1989).

SRI’s Core Language Engine (Alshawi 1992) is an example of a comprehensive
development environment based on Prolog. It is probably the most accomplished
industrial system in the domain of syntax and formal semantics. Using it, Agnäs et
al. (1994) built the Spoken Language Translator (SLT) to translate spoken English
to spoken Swedish in the area of airplane reservations. The SLT has been adapted to
other language pairs.

Exercises

8.1. Translate the sentences of Sect. 8.2.1 into French or German and write the DCG
grammar accepting them.

8.2. Underline constituents of the sentence The nice hedgehog ate the worm in its
nest.

8.3. Write a grammar accepting the sentence The nice hedgehog ate the worm in its
nest. Draw the corresponding tree. Do the same in French or German.

8.4. The previous grammar contains a left-recursive rule. Transform it as indicated
in this chapter.

8.5. Give a sentence generated by the previous grammar that is not semantically
correct.

8.6. Verbs of being can be followed by adjective phrases or noun phrases. Imagine a
new constituent category, adjp, describing adjective phrases. Write the correspond-
ing rules. Write rules accepting the sentences the waiter is tall, the waiter is very tall,
and Bill is a waiter.

8.7. How does Prolog translate the rule lex -> [in, front].?

8.8. How does Prolog translate the rule lex -> [in], {prolog_code},
[front].?
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8.9. Write the expand_term/2 predicate that converts DCG rules into Prolog
clauses.

8.10. Write a grammar accepting the sentence The nice hedgehog ate the worm in its
nest with variables building the parse tree.

8.11. Replace all nouns of the previous sentence by personal pronouns, and write the
grammar.

8.12. Translate the sentence in Exercise 8.10 into French or German, and add vari-
ables to the rules to check number, gender, and case agreement.

8.13. Calculate the β-reductions of expressions λx.f(x)(y) and λx.f(x)(λy.f(y)).

8.14. Write a grammar that accepts the noun phrase the nice hedgehog and that builds
a syntactic representation of it.

8.15. Persona’s parser accepts orders like Play before you accuse me. Draw the cor-
responding logical form. Write grammar rules that parse the order Play a song and
that build a logical form from it.
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Partial Parsing

9.1 Is Syntax Necessary?

The description of language in terms of layers – sounds, words, and syntax – can
suggest that a parse tree is a necessary step to obtain the semantic representation of
a sentence. Yet, many industrial applications do not rely on syntax as we presented
it before. The reason is that it is difficult to build a syntactic parser with large gram-
matical coverage, expensive in terms of resources, and sometimes it is not worth the
cost.

Some applications need only to detect key words, as in some telephone speech
servers. There, the speech recognition module spots meaningful words and sets the
others aside. It enables the system to deal with the noisy environment or the frag-
mented nature of speech by telephone. Other applications rely on the detection of
word groups such as noun phrases. Although sentences are not fully parsed, the re-
sult is sufficient to make use of it. Information retrieval and extraction are typical
applications relying on group detection techniques.

In this chapter, we will examine a collection of techniques to extract incomplete
syntactic representations. These techniques are generally referred to as partial or
shallow parsing and operate on groups of words, often called chunks. Some of them
just carry out the detection of key words or specific word patterns. Others use phrase-
structure rules describing groups such as noun groups or verb groups. Finally, some
techniques are an extension of part-of-speech tagging and resort to similar methods.

9.2 Word Spotting and Template Matching

9.2.1 ELIZA

A first shallow technique consists in matching predefined templates. It appeared with
the popular ELIZA program that mimics a dialogue between a psychotherapist and
his/her patient (Weizenbaum 1966). In fact, ELIZA understands merely nothing. She
“spots” a handful of words or patterns such as yes, no, why, I’m afraid of X, I like X,
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etc., where X is a name or any group of words. When a template matches the user’s
sentence, ELIZA has a set of ready-made answers or questions mapped onto it. When
no template matches, ELIZA tries to guess whether the sentence is a declaration, a
negation, or an interrogation, and has repartees like in what way, can you think of a
specific example, go on, etc. It enables the machine to follow the conversation with
a semblance of realism. Table 9.1 shows some user/psychotherapist templates.

Table 9.1. Some ELIZA templates.

User Psychotherapist
. . . I like X. . . Why do you like X?
. . . I am X. . . How long have you been X?
. . . father. . . Tell me more about your father

ELIZA’s dialogue pays a specific attention to words like mother and father.
Whenever one of these words occurs, ELIZA asks for more details. We remind the
reader that this program was created when Freudian theories were still very influen-
tial. Although the approach is now considered simplistic, at best, the psychoanalyti-
cal settings secured ELIZA a mainstream popularity.

9.2.2 Word Spotting in Prolog

A word spotting program can easily be written using DCG rules. Utterances are
modeled as phrase-structure rules consisting of a beginning, the word or pattern to
search, and an end. The translation into a DCG rule is straightforward:

utterance(U) --> beginning(B), [the_word], end(E).

Each predicate has a variable that unifies with the part of the utterance it rep-
resents. Variables B and E unify respectively with the beginning and the end of the
utterance. The variable U is used to build the system answer as in the templates in
Table 9.1.

Prolog translates the DCG rules into clauses when they are consulted. It adds two
arguments to each predicate, and the previous rule expands into:

utterance(U, L1, L) :-
beginning(B, L1, L2),
c(L2, the_word, L3),
end(E, L3, L).

We saw in Chap. 8 that each predicate in the rule covers a word sequence, and that
it corresponds to the difference of the two new arguments:L1minusL corresponds to
utterance; L1 minus L2 corresponds to beginning; L3 minus L corresponds
to end. Figure 9.1 shows the composition of the utterance with respect to the new
lists.
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E L

L3

L1

B L2

The word

Utterance 

Beginning End

Fig. 9.1. The composition of utterance.

To match B and E, the trick is to define beginning/3 and end/3 as append-
like predicates:

beginning(X, Y, Z) :- append(X, Z, Y).
end(X, Y, Z) :- append(X, Z, Y).

ELIZA is then a loop that reads the user input, tries to find a matching utter-
ance, and answers with the corresponding template. It stops when the user writes
the word bye. The next program is a simplified version of ELIZA. It matches the
user/psychoanalyst pairs in Table 9.1.

%% A simplified version of ELIZA in Prolog
%%

% The main loop reads the input and calls process/1
% It stops when the input is the word bye.

eliza :-
write(’Hello, I am ELIZA. How can I help you?’),
nl,
repeat,
write(’> ’),
tokenize(In),
process(In).

% process/1 accepts the user’s utterance.
% It either terminates or tries to find a
% template matching the user’s utterance

process([bye | _]) :-
write(’ELIZA: bye’), nl, !.

process(In) :-
utterance(Out, In, []),
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!,
write(’ELIZA: ’), write_answer(Out),
fail.

% utterance is a set of DCG rules describing
% templates

utterance([’Why’, aren, ’’’’, t, you | Y]) -->
[’I’, am, not], end(Y).

utterance([’How’, long, have, you, been | Y]) -->
[’I’, am], end(Y).

utterance([’Why’, do, you, like | Y]) -->
[’I’, like], end(Y).

utterance([’Do’, you, often, think, of | Y]) -->
beginning(_), [’I’, remember], end(Y).

utterance([’Please’, tell, me, more, about, your,
X, .]) -->

beginning(_), [X], end(_), {important(X)}.
utterance([’Why’, are, so, negative, ’?’]) -->
[no].

utterance([’Tell’, me, more, .]) -->
[_].

utterance([’Please’, go, on, .]) -->
beginning(_).

% The Prolog clauses beginning/3 and end/3
% link the pieces of the utterance

beginning(X, Y, Z) :- append(X, Z, Y).
end(X, Y, Z) :- append(X, Z, Y).

% The Freudian facts
important(father).
important(mother).
important(brother).
important(sister).

% write_answer/1 prints the content of the list
% containing Eliza’s answer.

write_answer([Head | Tail]) :-
write(Head), write(’ ’),
write_answer(Tail).

write_answer([]) :- nl.
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The next lines are a sample dialogue with ELIZA:

?- eliza.
Hello, I am ELIZA. How can I help you?
> yes
ELIZA: Tell me more .
> I like apples
ELIZA: Why do you like apples
>I went out with my father
ELIZA: Please tell me more about your father .
> no
ELIZA: Why are so negative ?
> I am cold
ELIZA: How long have you been cold
> bye
ELIZA: bye

Yes
?-

9.3 Multiword Detection

9.3.1 Multiwords

While ELIZA has no real application, the techniques we used in it can serve to detect
specific patterns in texts or in speech. Finding multiple word expressions or multi-
words is an example.

Multiwords – or multiword expressions (MWE) – are sequences of two or more
words that act as a single lexical unit. They include proper nouns (names) of per-
sons, companies, organizations, temporal expressions describing times and dates,
and numerical expressions. Multiwords also include complex prepositions, adverbs,
conjunctions, or phrasal verbs where each of the words taken separately cannot be
clearly understood (Table 9.2). Multiwords corresponding to people or organization
names are frequent in the press and the media, where new denominations surge and
quickly disappear.

Although the identification of multiwords may seem intuitive, there are many
tricky cases. In addition, people do not always agree on their exact definition.

9.3.2 A Standard Multiword Annotation

In the 1990s, The US Department of Defense organized series of competitions to
measure the performance of commercial and academic systems on multiword detec-
tion. It called them the Message Understanding Conferences (MUC). To help bench-
marking the various systems, MUC-6 and MUC-7 defined an annotation scheme that
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Table 9.2. Multiwords in English and French.

Type English French
Prepositions to the left hand side À gauche de
Adverbs because of à cause de
Conjunctions
Names British gas plc. Compagnie générale d’électricité SA
Titles Mr. Smith M. Dupont

The President of the United States Le président de la République
Verbs give up faire part

go off rendre visite

was shared by all the participants. This annotation has subsequently been adopted by
commercial applications.

The MUC annotation restricts the annotation to information useful for its main
funding source: the US military. It considers named entities (persons, organizations,
locations), time expressions, and quantities. The annotation scheme defines a corre-
sponding XML element for each of these three classes: <ENAMEX>, <TIMEX>, and
<NUMEX> (Chinchor 1997), with which it brackets the relevant phrases in a text.
The phrases can be real multiwords, consisting of two or more words, or they can be
restricted to a single word.

The <ENAMEX> element identifies proper nouns and uses a TYPE attribute with
three values to categorize them: ORGANIZATION, PERSON, and LOCATION, as in

the <ENAMEX TYPE="PERSON">Clinton</ENAMEX> government
<ENAMEX TYPE="ORGANIZATION">BridgestoneSports Co.</ENAMEX>
<ENAMEX TYPE="ORGANIZATION">EuropeanCommunity</ENAMEX>
<ENAMEX TYPE="ORGANIZATION">University of California</ENAMEX>
in <ENAMEX TYPE="LOCATION">Los Angeles</ENAMEX>

The <TIMEX> element identifies time expressions and uses a TYPE attribute to
distinguish between DATE and TIME, as in

<TIMEX TYPE="TIME">twelve o’clock noon</TIMEX>
<TIMEX TYPE="TIME">5 p.m. EST</TIMEX>
<TIMEX TYPE="DATE">January 1990</TIMEX>

The <NUMEX> element is used to bracket quantities. It has also a TYPE attribute
to categorize MONEY and PERCENT, as in

<NUMEX TYPE="MONEY">20 million New Pesos</NUMEX>
<NUMEX TYPE="MONEY">$42.1 million</NUMEX>
<NUMEX TYPE="MONEY">million-dollar</NUMEX> conferences
<NUMEX TYPE="PERCENT">15 pct</NUMEX>
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9.3.3 Detecting Multiwords with Rules

The detection of multiwords with rules is an extension of word spotting. Just as
for word spotting, we represent multiwords using DCG rules. We use variables and
Prolog code to extract them from the word stream and annotate them.

Compounded prepositions, conjunctions, and phrasal verbs are often listed in dic-
tionaries and can be encoded as Prolog constants. Other multiwords raise more prob-
lems. Their identification generally requires specialized dictionaries of surnames,
companies, countries, and trademarks. Some of these dictionaries, called gazetteers,
are available on the Internet. They are built from the compilation of lexical sources
such as economic and legal newspapers, directories, or Internet Web sites.

The extraction of multiwords also relies on hints that vary according to the type of
entity to detect. Locations may include words such as Ocean, Range, River, etc. Le-
gal denominations will be followed by acronyms such as Ltd, Corp., SA, and GMBH.
Persons might be preceded by titles such as Mr., Mme, Herr, Dr., by a surname, or
have a capitalized initial. Currency phrases will include a sign such as e, $, £, etc.,
and a number. Such techniques can be applied to any measuring expression: length,
time, etc.

Let us write rules to detect the phrasal verb give up, the French title M. XXXX,
such as M. Dupont, and the European money worth XXXX euros, such as 200 euros.
As a result, the detector appends the multiword parts using an underscore charac-
ter: give_up, or builds a list with surrounding XML tags [<ENAMEX>, ’M.’,
’Dupont’, </ENAMEX>], and [<NUMEX>, 200, euros, </NUMEX>].
The corresponding rules are:

multiword(give_up) --> [give, up].
multiword([’<ENAMEX>’, ’M.’, Name, ’</ENAMEX>’]) -->
[’M.’], [Name],
{

name(Name, [Initial | _]),
Initial >= 65, % must be an upper-case letter
Initial =< 90

}.
multiword([’<NUMEX>’, Value, euros, ’</NUMEX>’]) -->
[Value], [euros],
{

number(Value)
}.

9.3.4 The Longest Match

Among the set of multiwords we want to detect, some may have a common suffix,
as for the phrases in front and in front of. This corresponds to the rules:

multiword(in_front) --> [in, front].
multiword(in_front_of) --> [in, front, of].
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With the sentence

The car in front of the house

rules as they are ordered above yield two solutions. The first multiword to be matched
is in front, and if Prolog backtracks, it will find in front of. A backtracking strategy is
not acceptable in most cases. What we generally want is the longest possible match
(Table 9.3).

Table 9.3. Longer matches are preferred.

English French
Competing multiwords in front of en face de

in front en face
Examples The car in front La voiture en face

In front of me En face de moi

Prolog interpreters consider rules sequentially and downwards (from the begin-
ning to the end). We implement the longest match by ordering the DCG rules prop-
erly. When several multiwords compete, i.e., have the same beginning, the longest
one must be searched first, as in the sequence:

multiword(in_front_of) --> [in, front, of].
multiword(in_front) --> [in, front].

9.3.5 Running the Program

Now we will write a rule to embed the multiword description. If the word stream
contains a multiword, it should be modeled as a beginning, the multiword, and an
end, as in ELIZA. Its transcription into a DCG rule is straightforward:

word_stream_multiword(Beginning, Multiword, End) -->
beginning(Beginning),
multiword(Multiword),
end(End).

Extracting the list of multiwords means that the whole word stream must be
matched against the rule set. The multiword detector scans the word stream from the
beginning, and once a multiword has been found, it starts again with the remaining
words.

multiword_detector/2 is a Prolog predicate. It takes the word stream In
as the input and the multiword list Out as the output. It searches a multiword within
the word stream using the word_stream_multiwordDCG rule.
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Each word_stream_multiword rule is translated into a Prolog predicate
when consulted and two new variables are added. Thus, word_stream_multi-
word is of arity 5 in the multiword_detector rule. The two last variables are
unified respectively to the input list and to the empty list.

When word_stream_multiword reaches a multiword, Beginning is uni-
fied with the beginning of the word stream and End with the rest. The program is
called recursively with End as the new input value.

multiword_detector(In, [Multiword | Out]) :-
word_stream_multiword(Beginning, Multiword, End,

In, []),
multiword_detector(End, Out).
multiword_detector(_, []).

Using the detector with the sentence M. Dupont was given 500 euros in front of
the casino results into [’<ENAMEX>’, ’M. ’, ’Dupont’, ’</ENAMEX>’],
[’<NUMEX>’, 500, euros, ’</NUMEX>’], and in_front_of:

?- multiword_detector([’M.’, ’Dupont’, was, given,
500, euros, in, front, of, the, casino], Out).
Out = [[<ENAMEX>, M., Dupont, </ENAMEX>],
[<NUMEX>, 500, euros, </NUMEX>], in_front_of]

The result is a list containing sublists. The flatten/2 predicate can replace
recursively all the sublists by their elements and transform them into a flat list.

?- flatten([[’<ENAMEX>’, ’M. ’, Dupont,
’</ENAMEX>’], [’<NUMEX>’, 500, ’DM’, ’</NUMEX>’],
in_front_of], Out).
Out = [<ENAMEX>, M., Dupont, </ENAMEX>, <NUMEX>,
500, DM, </NUMEX>, in_front_of]

The multiword detector can be modified to output the whole stream. That is,
the multiwords are tagged and other words remain unchanged. In this program,
Beginning is appended to the multiword Multiword that has been detected to
form the Head of the word stream. The Head and the result of the recursive call
Rest form the Output. We must not forget the End in the termination fact.

multiword_detector(In, Out) :-
word_stream_multiword(Beginning, Multiword, End,

In, []),
!,
multiword_detector(End, Rest),
append(Beginning, [Multiword], Head),
append(Head, Rest, Out).
multiword_detector(End, End).

Let us now execute a query with this new detector with flatten/2:
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?- multiword_detector([’M.’, ’Dupont’, was, given,
500, euros, in, front, of, the, casino], Res),
flatten(Res, Out).
Out = [<ENAMEX>, M., Dupont, </ENAMEX>, was,
given, <NUMEX>, 500, euros, </NUMEX>, in_front_of,
the, casino]

9.4 Noun Groups and Verb Groups

The word detection techniques enabled us to search certain word segments, with
no consideration of their category or part of speech. The detection can extend to
syntactic patterns.

The two most interesting word groups are derived from the two major parts of
speech: the noun and the verb. They are often called noun groups and verb groups,
although noun chunks and verb chunks are also widely used. In a sentence, noun
groups (Table 9.4) and verb groups (Table 9.5) correspond to verbs and nouns and
their immediate depending words. This is often understood, although not always,
as words extending from the beginning of the constituent to the head noun or the
head verb. That is, the groups include the headword and its dependents to the left.
They exclude the postmodifiers. For the noun groups, this means that modifying
prepositional phrases or, in French, adjectives to the right of the nouns are not part
of the groups.

The principles we exposed above are very general, and exact definitions of groups
may vary in the literature. They reflect different linguistic viewpoints that may coex-
ist or compete. However, when designing a parser, precise definitions are of primary
importance. Like for part-of-speech tagging, hand-annotated corpora will solve the
problem. Most corpora come with annotation guidelines. They are usually written
before the hand-annotation process. As definitions are often difficult to formulate the
first time, they are frequently modified or complemented during the annotation pro-
cess. Guidelines normally contain definitions of groups and examples of them. They
should be precise enough to enable the annotators to bracket consistently the groups.
The guidelines will provide the grammar writer with accurate definitions, or when
using machine learning techniques, the annotated texts will encapsulate the linguistic
knowledge about groups and make it accessible to the automatic analysis.

Table 9.4. Noun groups.

English French German
The waiter is bringing the
very big dish on the table

Le serveur apporte le très
grand plat sur la table

Der Ober bringt die sehr
große Speise an dem Tisch

Charlotte has eaten the meal
of the day

Charlotte a mangé le plat du
jour

Charlotte hat die
Tagesspeise gegessen
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Table 9.5. Verb groups.

English French German
The waiter is bringing the
very big dish on the table

Le serveur apporte le très
grand plat sur la table

Der Ober bringt die sehr
große Speise an den Tisch

Charlotte has eaten the meal
of the day

Charlotte a mangé le plat du
jour

Charlotte hat die
Tagesspeise gegessen

9.4.1 Groups Versus Recursive Phrases

The rationale behind word group detection is that a group structure is simpler and
more tractable than that of a sentence. Group detection uses a local strategy that
can accept errors without making subsequent analyses of the rest of the sentence
fail. It also leaves less room for ambiguity because it sets aside the attachment of
prepositional phrases. As a result, partial parsers are more precise. They can capture
roughly 90% of the groups successfully (Abney 1996).

Like for complete sentences, phrase-structure rules can describe group patterns.
They are easier to write, however, because verb groups and noun groups have a rela-
tively rigid and well-defined structure. In addition, local rules usually do not describe
complex recursive linguistic structures. That is, there is no subgroup inside a group
and, for instance, the noun group is limited to a unique head noun. This makes the
parser very fast. Moreover, in addition to phrase-structure rules, finite-state automata
or regular expressions can also describe group structures.

9.4.2 DCG Rules to Detect Noun Groups

A noun group consists of an optional determiner the, a, or determiner phrase such
as all of the, one or more optional adjectives, and one or more nouns. It can also
consist of a pronoun or a proper noun – a name. This definition is valid in English.
In German, sequences of nouns usually form a single word through compounding.
In French, noun groups also include adjectives to the right of the head noun that we
set aside.

The core of the noun group is a sequence of nouns also called a nominal expres-
sion. A first possibility would be to write as many rules as we expect nouns. However,
this would not be very elegant. A recursive definition is more concise: a nominal is
then either a noun or a noun and a nominal. Symbols noun and nominal have
variables that unify with the corresponding word. This corresponds to the rules:

nominal([NOUN | NOM]) --> noun(NOUN), nominal(NOM).
nominal([N]) --> noun(N).

The simplest noun groups consist of a determiner and a nominal. The determiners
are the articles, the possessive pronouns, etc. They are sometimes more complex
phrases that we set aside here. Determiners are optional and the group definition must
also represent its absence. A noun group can also be a proper noun or a pronoun:



224 9 Partial Parsing

% noun_group(-NounGroup)
% detects a list of words making a noun group and
% unifies NounGroup with it

noun_group([D | N]) --> det(D), nominal(N).
noun_group(N) --> nominal(N).
noun_group([PN]) --> proper_noun(PN).
noun_group([PRO]) --> pronoun(PRO).

The adjective group serves as an auxiliary in the description of noun group. It
can feature one or more adjectives and be preceded by an adverb. If we set aside the
commas, this corresponds to:

% adj_group(-AdjGroup)
% detects a list of words making an adjective
% group and unifies AdjGroup with it

adj_group_x([RB, A]) --> adv(RB), adj(A).
adj_group_x([A]) --> adj(A).

adj_group(AG) --> adj_group_x(AG).
adj_group(AG) -->
adj_group_x(AGX),
adj_group(AGR),
{append(AGX, AGR, AG)}.

Past participles and gerunds can replace adjectives as in A flying object or The
endangered species:

adj(A) --> past_participle(A).
adj(A) --> gerund(A).

We must be aware that these rules may conflict with a subsequent detection of
verb groups. Compare the ambiguous phrase detected words in the detected words
and The partial parser detected words.

Adjectives can precede the noun. Using the adjective group, we add two rules to
the noun group:

noun_group(NG) -->
adj_group(AG), nominal(NOM),
{append(AG, NOM, NG)}.

noun_group(NG) -->
det(D), adj_group(AG), nominal(NOM),
{append([D | AG], NOM, NG)}.
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9.4.3 DCG Rules to Detect Verb Groups

Verb groups can be written in a similar way. In English, the simplest group consists
of a single tensed verb:

verb_group([V]) --> tensed_verb(V).

Verb groups also include adverbs that may come before the verb:

verb_group([RB, V]) --> adv(RB), tensed_verb(V).

Verb groups can combine auxiliary and past participles, or auxiliary and gerund,
or modal and infinitive, or to and infinitive, or be simply an auxiliary:

verb_group([AUX, V]) --> aux(AUX),past_participle(V).
verb_group([AUX, G]) --> aux(AUX), gerund(G).
verb_group([MOD, I]) --> modal(MOD), infinitive(I).
verb_group([to, I]) --> [to], infinitive(I).
verb_group([AUX]) --> aux(AUX).

Verb groups can include adverbs and have more auxiliaries:

verb_group([AUX, RB, V]) -->
aux(AUX), adv(RB), past_participle(V).

verb_group([AUX1, AUX2, V]) -->
aux(AUX1), aux(AUX2), past_participle(V).

verb_group([MOD, AUX, V]) -->
modal(MOD), aux(AUX), past_participle(V).

Now let us write a rule that describes a group inside a word stream: word_-
stream_group. As for with the multiwords, such a stream consists of a beginning,
the group, and an end. Its transcription into a DCG rule is:

word_stream_group(Beginning, Group, End) -->
beginning(Beginning),
group(Group),
end(End).

Finally, a group can either be a noun group or a verb group. As for multiwords,
noun groups and verb groups are annotated using the XML tags <NG> and <VG>:

group(NG) -->
noun_group(Group),
{append([’<NG>’ | Group], [’</NG>’], NG)}.

group(VG) -->
verb_group(Group),
{append([’<VG>’ | Group], [’</VG>’], VG)}.
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9.4.4 Running the Rules

Let us write a Prolog program using an approximation of the longest match algorithm
to run the rules. The program is similar to the multiword detector:

group_detector(In, Out) :-
word_stream_group(Beginning, Group, End, In, []),
group_detector(End, Rest),
append(Beginning, [Group], Head),
append(Head, Rest, Out).

group_detector(End, End).

Since these rules match the longest segments first, they must be written from the
longest to the shortest.

Although the grammar is certainly not comprehensive, it can fare reasonably well
for a first step. We shall apply it to a text from the Los Angeles Times “Flying Blind
With the Titans”, December 17, 1996):

Critics question the ability of a relatively small group of big integrated prime
contractors to maintain the intellectual diversity that formerly provided the
Pentagon with innovative weapons. With fewer design staffs working on mil-
itary problems, the solutions are likely to be less varied.

The lexical rules for this text are:
The query results in:

?- group_detector([critics, question, the,
ability, of, a, relatively, small, group, of, big,
integrated, prime, contractors, to, maintain, the,
intellectual, diversity, that, formerly, provided,
the, pentagon, with, innovative, weapons, with,
fewer, design, staffs, working, on, military,
problems, the, solutions, are, likely, to, be,
less, varied], L), flatten(L, Out).

Out = [<NG>, critics, </NG>, <VG>, question,
</VG>, <NG>, the, ability, </NG>, of, <NG>, a,
relatively, small, group, </NG>, of, <NG>, big,
integrated, prime, contractors, </NG>, <VG>, to,
maintain, </VG>, <NG>, the, intellectual,
diversity, </NG>, that, <VG>, formerly, provided,
</VG>, <NG>, the, pentagon, </NG>, with, <NG>,
innovative, weapons, </NG>, with, <NG>, fewer,
design, staffs, </NG>, working, on, <NG>,
military, problems, </NG>, <NG>, the, solutions,
</NG>, <VG>, are, </VG>, likely, <VG>, to, be,
</VG>, less, varied]



9.5 Group Detection as a Tagging Problem 227

det(the) --> [the]. adj(small) --> [small].
det(a) --> [a]. adj(big) --> [big].
det(null_det) --> []. adj(prime) --> [prime].
noun(critics) --> [critics].
noun(ability) --> [ability].
noun(group) --> [group].
noun(contractors) -->

[contractors].
noun(diversity) -->

[diversity].
noun(pentagon) -->

[pentagon].
noun(weapons) --> [weapons].
noun(design) --> [design].
noun(staffs) --> [staffs].
noun(problems) -->

[problems].
noun(solutions) -->

[solutions].
adv(relatively) -->

[relatively].
adv(formerly) --> [formerly].
adv(likely) --> [likely].
adv(less) --> [less].

adj(intellectual) -->
[intellectual].

adj(innovative) -->
[innovative].

adj(military) --> [military].
adj(fewer) --> [fewer].
infinitive(be) --> [be].
infinitive(maintain) -->

[maintain].
tensed_verb(question) -->

[question].
tensed_verb(provided) -->

[provided].
past_participle(integrated) -->

[integrated].
past_participle(varied) -->

[varied].
aux(are) --> [are].

Though our detector misses groups, we realize that a limited effort has rapidly
produced results.

9.5 Group Detection as a Tagging Problem

Group detection results in bracketing a word sequence with opening and closing an-
notations. This can be recast as a tagging problem. However, the detector inserts
brackets between words instead of assigning tags to words. The most intuitive an-
notation is then probably to tag intervals. We can use algorithms very similar to
part-of-speech tagging. They give us an alternate method to DCG rules describing
verb groups and noun groups.

For the sake of simplicity, we will only present the noun group detection. Verb
group detection uses exactly the same method. We first describe which tags to use
to annotate the intervals. We will then see that we can equivalently tag the words
instead of the gaps.

9.5.1 Tagging Gaps

Below are examples of noun group bracketing from Ramshaw and Marcus (1995).
They insert brackets between the words where appropriate.



228 9 Partial Parsing

[NG The government NG] has [NG other agencies and instruments NG] for
pursuing [NG these other objectives NG] .

Even [NG Mao Tse-tung NG] [NG ’s China NG] began in [NG 1949 NG]
with [NG a partnership NG] between [NG the communists NG] and [NG a
number NG] of [NG smaller, non-communists parties NG] .

If we only consider noun groups, the tagset must include opening and ending
brackets. There must also be a tag to indicate a separation between two contiguous
noun groups. The rest of the gaps are to be labeled with a “no bracket” tag.

As noun group detection usually considers nonrecursive sequences, we avoid
nested brackets, as in this sequence: [... [ or in this one: ] ...]. To check nest-
ing while processing the stream, we must make a distinction between a “no bracket”
inside a group and “no bracket” outside a group. The tagger can then prevent an
inside “no bracket” to be followed by a closing bracket. We complement the tagset
with no bracket tags denoting either we are within a group or outside (Table 9.6)

Table 9.6. Tagset to annotate noun groups.

Beginning End Between No bracket No bracket
(outside) (inside)

[NG NG] NG][NG Outside Inside

In addition to nested groups, other inconsistencies can occur, such as the se-
quences:

• [ Outside
• ] Inside or
• Outside ]

The tagger must keep track of the preceding bracket to refuse illegal tags.

9.5.2 Tagging Words

Instead of tagging the gaps, we can equivalently tag the words. Ramshaw and Marcus
(1995) defined a tagset of three elements {I, O, B}, where I means that the word is
inside a noun group, O means that the word is outside, and B means that the word
is at the beginning of a noun group that immediately follows another noun group.
Using this tagging scheme, an equivalent annotation of the sentences in Sect. 9.5.1
is:

The/I government/I has/O other/I agencies/I and/I instruments/I for/O
pursuing/O these/I other/I objectives/I ./O

Even/O Mao/I Tse-tung/I ’s/B China/I began/O in/O 1949/I with/O a/I
partnership/I between/O the/I communists/I and/O a/I number/I of /O
smaller/I ,/I non-communists/I parties/I ./O
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As in the case for gap tagging, some inconsistencies can occur, such as the se-
quence: O B. The tagger can refuse such sequences, mapping them to a plausible
annotation. That is, in the example above, to change the B tag into an I tag.

As with part-of-speech tagging, group detection uses statistical and symbolic
rules methods. Both statistics and rules are learned from hand-annotated corpora.
Church (1988) first addressed group detection as a tagging problem and used statis-
tical methods. Church tagged the gaps with brackets. Ramshaw and Marcus (1995)
used a symbolic strategy. They adapted Brill’s (1995) algorithm to learn rules to
detect groups from annotated corpora. They used the {I, O, B} tagset.

9.5.3 Using Symbolic Rules

The symbolic rules algorithm is very similar to that of Brill’s part-of-speech tagging
method. The initial tagging considers the part of speech of the word and assigns the
group annotation tag that is most frequently associated with it, that is, I, O, or B.
Then, rules applied sequentially modify annotation tags.

Rules consider the immediate context of the tag to be modified, spanning a few
words to the left and a few words to the right of the current word. More precisely,
they take into account group annotation tags, parts-of-speech tags, and words around
the current word. When the context of the current word matches that of the rule being
applied, the current tag is altered.

Ramshaw and Marcus (1995) applied a set of 100 templates using a combination
of 10 word contexts and 10 part-of-speech contexts, 20 templates in total, and 5
group annotation tag contexts spanning up to three words to the left and to the right:

• W0, W−1, W1 being respectively the current word, the first word to the left, and the
first word to the right.

• P0, P−1, P1 being respectively the part of speech of the current word, of the first
word to the left, and of the first word to the right.

• T0, T−1, T1 being respectively the group annotation tag of the current word, of
the first word to the left, and of the first word to the right.

Table 9.7 shows the complete set of templates. Word and part-of-speech tem-
plates are the same.

After training the rules on the Penn Treebank using its part-of-speech tagset, they
could retrieve more than 90% of the noun groups. The five most productive rules are
given in Table 9.8. The first rule means that an I tag is changed into an O tag when
the current part of speech is an adjective (JJ) and the following word is tagged O.
The second rule sets the tag to B if the two previous tags are I and the current word’s
part of speech is a determiner (DT).

9.5.4 Using Statistical Tagging

The maximum likelihood estimator determines the optimal sequence of gap tags G =
g2, g3, ..., gn, given a sequence of part-of-speech tags T = t1, t2, t3, ..., tn and of
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Table 9.7. Patterns used in the templates.

Word patterns Noun group patterns
Pattern Meaning Pattern Meaning
W0 Current word T0 Current noun group tag
W−1 First word to left T−1, T0 Tag bigram to left of current word
W1 First word to right T0, T1 Tag bigram to right of cur. word
W−1, W0 Bigram to left of current word T−2, T−1 Tag bigram to left of current word
W0, W1 Bigram to right of current word T1, T2 Tag bigram to right
W−1, W1 Surrounding words
W−2, W−1 Bigram to left
W1, W2 Bigram to right
W−1,−2,−3 Words 1 or 2 or 3 to left
W1,2,3 Words 1 or 2 or 3 to right

Table 9.8. The five first rules from Ramshaw and Marcus (1995).

Pass Old tag Context New tag
1 I T1 = O, P0 = JJ O
2 - T−2 = I, T−1 = I, P0 = DT B
3 - T−2 = O, T−1 = I, P−1 = DT I
4 I T−1 = I, P0 = WDT B
5 I T−1 = I, P0 = PRP B

words W = w1, w2, w3, ..., wn. It maximizes Eq. (9.1), where wi−1 and wi are the
words before and after each gap together with the surrounding parts of speech: ti−1

and ti. Church (1988) used a simpler equation in considering parts of speech only,
see Eq. (9.2).

P (G) =
n∏

i=2

P (gi|wi−1, ti−1, wi, ti). (9.1)

P (G) =

n∏
i=2

P (gi|ti−1, ti). (9.2)

Finally, the equation can take the preceding tag into account to prevent illegal
transitions. That is, to assign:

P (gi|ti−1, ti, gi−1)

to 0 when gi = [ and gi−1 = Outside, for instance.

9.6 Cascading Partial Parsers

We saw that partial phrase-structure rules could detect multiwords and groups. We
can combine both detectors into a multilevel parser and add more layers. A tokenizer
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is necessary to read the text before it can be passed to the parsers. The applications
generally use a part-of-speech tagger before the group detector (or chunker) and
sometimes a morphological parser. The parser’s structure is then a pipeline of an-
alyzers, where each parsing level has a definite task to achieve. This technique is
referred to as cascaded parsing.

With this approach, the exact number and nature of levels of cascaded parsers
depends on the application and the expected result. In addition, some layers are rel-
atively generic, while others are more specific and depend on the application goal.
However, the principle is that one level uses the output of the lower level and passes
on the result to the next layer (Fig. 9.2).

Sentences

Tokenizer

Multiwords

Part-of-speech
tagging

Group detection
(or chunking)

Fig. 9.2. A cascade of partial parsers.

9.7 Elementary Analysis of Grammatical Functions

9.7.1 Main Functions

In a previous section, we named groups according to the part of speech of their main
word, that is, noun groups and verb groups. We can also consider their grammatical
function in the sentence. We already saw that main functions (or relations) are sub-
ject, direct object, and indirect object. An accurate detection of function is difficult,
but we can write a simplified one using cascaded parsing and phrase-structure rules.

We can recognize grammatical functions using a layer above those we have al-
ready described and thus complement the cascade structure. In English, the subject
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is generally the first noun group of a sentence in the active voice. It is marked with
the nominative case in German, while case inflection is limited to pronouns in En-
glish and French. The direct object is the noun group just after the verb if there is no
preposition in-between. It is marked with the accusative case in German.

We will now write a small set of DCG rules to encode this simplified description.
The structure of a simple sentence consists of a subject noun group, a verb group in
the active voice, and an object noun group. It corresponds to the rules:

sentence(S, V, O) -->
subject(S),
verb(V, active),
object(O),
[’.’].

subject(S) --> noun_group(S).

object(O) --> noun_group(O).

verb(V, active) --> verb_group(V, active).

We must modify the description of verbs in the terminal symbols to add an ac-
tive/passive feature.

9.7.2 Extracting Other Groups

The Subject–Verb–Object relation is the core of most sentences. However, before
extracting them, it is useful to skip some groups between them. Among the groups,
there are prepositional phrases and embedded clauses, as in the two sequences: sub-
ject, prepositional groups, verb and subject, relative clause, verb.

A prepositional group can be defined as a preposition followed by a noun group.
Using a DCG rule, this translates into:

prep_group([P | [NG]]) --> prep(P), ng(NG).

The detection of prepositional groups is a new layer in the cascade structure. A
new rule describing ng as a terminal symbol is then necessary to be consistent with
the noun groups detected before:

ng([’<NG>’| NG]) --> [[’<NG>’| NG]].

Embedded clauses can be relative, infinitive, or subordinate. Here we will only
consider relative and infinitive clauses that may modify a noun.

A relative clause is an embedded sentence whose subject or object has been re-
placed with a relative pronoun. The relative pronoun comes in front of the clause.
For simple clauses, this translates into two rules:
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%Relative clause: The relative pronoun is the subject
relative_clause(RC) -->
relative_pronoun(R),
vg(VG),
ng(NG),
{append([R | [VG]], [NG], RC)}.

% Relative clause: The relative pronoun is the object
relative_clause(RC) -->
relative_pronoun(R),
ng(NG),
vg(VG),
{append([R | [NG]], [VG], RC)}.

An infinitive clause is simply a verb phrase set in the infinitive. For simple ex-
amples, it translates into a verb group possibly followed by a noun group, where the
verb group begins with to:

infinitive_clause([[’<VG>’, to | VG], NG]) -->
vg([’<VG>’, to | VG]),
ng(NG).

infinitive_clause([[’<VG>’, to | VG]]) -->
vg([’<VG>’, to | VG]).

Like for noun groups, we must describe verb groups as a terminal symbol:

vg([’<VG>’ | VG]) --> [[’<VG>’ | VG]].

Now let us write the rules to describe the modifiers and annotate them:

modifier(MOD) -->
prep_group(PG),
{append([’<PG>’ | PG], [’</PG>’], MOD)}.

modifier(MOD) -->
relative_clause(RC),
{append([’<RC>’ | RC], [’</RC>’], MOD)}.

modifier(MOD) -->
infinitive_clause(IC),
{append([’<IC>’ | IC], [’</IC>’], MOD)}.

Finally, we write the detector to run the program:

modifier_detector(In, Out) :-
word_stream_modifier(Beginning, Group, End, In,[]),
modifier_detector(End, Rest),
append(Beginning, [Group], Head),
append(Head, Rest, Out).

modifier_detector(End, End).



234 9 Partial Parsing

word_stream_modifier(Beginning, Group, End) -->
beginning(Beginning),
modifier(Group),
end(End).

Let us apply these rules on the first sentence of the Los Angeles Times excerpt.
We must add prepositions and a relative pronoun to the vocabulary:

prep(of) --> [of].
prep(with) --> [with].

relative_pronoun(that) --> [that].

And the query yields:

?- modifier_detector([[<NG>, critics, </NG>],
[<VG>, question, </VG>], [<NG>, the, ability,
</NG>], of, [<NG>, a, relatively, small, group,
</NG>], of, [<NG>, big, integrated, prime,
contractors, </NG>], [<VG>, to, maintain, </VG>],
[<NG>, the, intellectual, diversity, </NG>], that,
[<VG>, formerly, provided, </VG>], [<NG>, the,
pentagon, </NG>], with, [<NG>, innovative,
weapons, </NG>], with, [<NG>, fewer, design,
staffs, </NG>], working, on, [<NG>, military,
problems, </NG>], [<NG>, the, solutions, </NG>],
[<VG>, are, </VG>], likely, [<VG>, to, be, </VG>],
less, varied], O).

O = [[<NG>, critics, </NG>], [<VG>, question,
</VG>], [<NG>, the, ability, </NG>], [<PG>, of,
[<NG>, a, relatively, small, group, </NG>],
</PG>], [<PG>, of, [<NG>, big, integrated, prime,
contractors, </NG>], </PG>], [<IC>, [<VG>, to,
maintain, </VG>], [<NG>, the, intellectual,
diversity, </NG>], </IC>], [<RC>, that, [<VG>,
formerly, provided, </VG>], [<NG>, the, pentagon,
</NG>], </RC>], [<PG>, with, [<NG>, innovative,
weapons, </NG>], </PG>], [<PG>, with, [<NG>,
fewer, design, staffs, </NG>], </PG>], working,
on, [<NG>, military, problems, </NG>], [<NG>, the,
solutions, </NG>], [<VG>, are, </VG>], likely,
[<IC>, [<VG>, to, be, </VG>], </IC>], less, varied]

Prepositional phrases and relative clauses are labeled with <PG>, <IC>, and
<RC> tags. Remaining groups are[<NG>, critics, </NG>], [<VG>,ques-
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tion, </VG>], and [<NG>, the, ability, </NG>], which correspond
to heads of the subject, main verb, and the object of the sentence.

9.8 An Annotation Scheme for Groups in French

The PEAS initiative (Protocole d’évaluation des analyseurs syntaxiques, Gendner
et al. 2003) defines an XML annotation scheme for syntactic groups (chunks) and
functional relations for French. It was created to reconcile different annotation prac-
tices and enable the evaluation of parsers. We present here the chunk annotation that
applies to continuous, nonrecursive constituents.

The PEAS annotation identifies six types of chunks:

1. verb groups (noyau verbal): <NV></NV>
2. noun groups (groupe nominal): <GN></GN>
3. prepositional groups: <GP></GP>
4. adjective groups: <GA></GA>
5. adverb groups: <GR></GR>
6. verb groups starting with a preposition: <PV></PV>

The sentence En quelle année a-t-on vraiment construit la première automobile?
‘Which year the first automobile was really built?’ is bracketed as

<GP> En quelle année </GP> <NV> a –t-on </NV> <GR> vraiment
</GR> <NV> construit </NV> <GN> la première automobile</GN> ?

The annotation first identifies the sentence in the corpus:

<E id="2"> En quelle année a -t-on vraiment
construit la première automobile ? </E>

The second step tokenizes the words:

<DOCUMENT fichier="Guide.1">
<E id="E2">

<F id="E2F1">En</F>
<F id="E2F2">quelle</F>
<F id="E2F3">année</F>
<F id="E2F4">a</F>
<F id="E2F5">-t-on</F>
<F id="E2F6">vraiment</F>
<F id="E2F7">construit</F>
<F id="E2F8">la</F>
<F id="E2F9">première</F>
<F id="E2F10">automobile</F>
<F id="E2F11">?</F>

</E>
</DOCUMENT>
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using the DTD

<!ELEMENT DOCUMENT ( E+ ) >
<!ATTLIST DOCUMENT fichier NMTOKEN #REQUIRED >
<!ELEMENT E ( F)+>
<!ATTLIST E id NMTOKEN #REQUIRED >
<!ELEMENT F ( #PCDATA ) >
<!ATTLIST F id ID #REQUIRED >

The third step brackets the groups:

<DOCUMENT fichier="Guide.1.ph1.IR.xml">
<E id="E2">

<Groupe type="GP" id="E2G1">
<F id="E2F1">En</F>
<F id="E2F2">quelle</F>
<F id="E2F3">année</F>

</Groupe>
<Groupe type="NV" id="E2G2">
<F id="E2F4">a</F>
<F id="E2F5">-t-on</F>

</Groupe>
<Groupe type="GR" id="E2G3">
<F id="E2F6">vraiment</F>

</Groupe>
<Groupe type="NV" id="E2G4">
<F id="E2F7">construit</F>

</Groupe>
<Groupe type="GN" id="E2G5">
<F id="E2F8">la</F>
<F id="E2F9">première</F>
<F id="E2F10">automobile</F>

</Groupe>
<F id="E2F11">?</F>

</E>
</DOCUMENT>

using the DTD

<!ELEMENT DOCUMENT ( E+ ) >
<!ATTLIST DOCUMENT fichier NMTOKEN #REQUIRED >
<!ELEMENT E ( F | Groupe )+>
<!ATTLIST E id NMTOKEN #REQUIRED >
<!ELEMENT Groupe ( F+ ) >
<!ATTLIST Groupe id ID #REQUIRED >
<!ATTLIST Groupe type ( GA | GN | GP | GR | NV |
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PV ) #REQUIRED >
<!ELEMENT F ( #PCDATA ) >
<!ATTLIST F id ID #REQUIRED >

9.9 Application: The FASTUS System

9.9.1 The Message Understanding Conferences

The FASTUS system was designed at the Stanford Research Institute to extract in-
formation from free-running text (Hobbs et al. 1997, Appelt et al. 1993). It was
implemented within the course of the Message Understanding Conferences (MUCs)
that we introduced in Sect. 9.3.2. MUCs were organized to measure the performance
of information extraction systems. They were held regularly until MUC-7 in 1997,
under the auspices of DARPA, an agency of the US Department of Defense. The
performances improved dramatically in the beginning and then stabilized. DARPA
discontinued the competitions when it realized that the systems were no longer im-
proving.

MUCs are divided into a set of tasks that have changed over time. The most basic
task is to extract people and company names. The most challenging one is referred
to as information extraction. It consists of the analysis of pieces of text ranging from
one to two pages, the identification of entities or events of a specified type, and filling
a predefined template with relevant information from the text. Information extraction
then transforms free texts into tabulated information. Here is an example news wire
cited by Hobbs et al. (1997) and its corresponding filled template drawn from MUC-3
(Table 9.9):

San Salvador, 19 Apr 89 (ACAN-EFE) – [TEXT] Salvadoran President-
elect Alfredo Cristiani condemned the terrorist killing of Attorney General
Roberto Garcia Alvarado and accused the Farabundo Marti National Lib-
eration Front (FMLN) of the crime.
...
Garcia Alvarado, 56, was killed when a bomb placed by urban guerrillas on
his vehicle exploded as it came to a halt at an intersection in downtown San
Salvador.
...
Vice President-elect Francisco Merino said that when the attorney general’s
car stopped at a light on a street in downtown San Salvador, an individual
placed a bomb on the roof of the armored vehicle.
...
According to the police and Garcia Alvarado’s driver, who escaped un-
scathed, the attorney general was traveling with two bodyguards. One of
them was injured.



238 9 Partial Parsing

Table 9.9. A template derived from the previous text. After Hobbs et al. (1997).

Template slots Information extracted from the text
Incident: Date 19 Apr 89
Incident: Location El Salvador: San Salvador (city)
Incident: Type Bombing
Perpetrator: Individual ID urban guerrillas
Perpetrator: Organization ID FMLN
Perpetrator: Organization confidence Suspected or accused by authorities: FMLN
Physical target: Description vehicle
Physical target: Effect Some damage: vehicle
Human target: Name Roberto Garcia Alvarado
Human target: Description Attorney general: Roberto Garcia Alvarado

driver
bodyguards

Human target: Effect Death: Roberto Garcia Alvarado
No injury: driver
Injury: bodyguards

9.9.2 The Syntactic Layers of the FASTUS System

FASTUS uses partial parsers that are organized as a cascade of finite-state automata.
It includes a tokenizer, a multiword detector, and a group detector as first layers. The
detector uses a kind of longest match algorithm. Verb groups are tagged with active,
passive, gerund, and infinitive features. Then FASTUS combines some groups into
more complex phrases. Complex groups include notably the combination of adjacent
nouns groups (appositives):

The joint venture, Bridgestone Sports Taiwan Co.
First noun group Second noun group

of noun groups separated by prepositions of or for (noun postmodifiers):

The board of directors

and of noun group conjunctions:

a local concern and a Japanese trading house

Complex groups also include verb expressions such as:

plan to set up
announced a plan to form

Such complex groups can be found in French and German, where they have often a
one-word counterpart in another language:

mettre une lettre à la poste ‘mail a letter’
jemanden kennen lernen ‘know somebody’
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They merely reduce to a single semantic entity that is formed differently from one
language to another.

FASTUS’ upper layers then deal with grammatical functions and semantics.
FASTUS attempts to reduce sentences to a basic pattern consisting of a subject, a
verb, and an object. Finally, FASTUS assigns a sense to some groups by annotating
them with a semantic category such as company, product, joint venture, location, and
so on.

SRI first used a full parser called TACITUS, and FASTUS as a front-end to off-
load it of some tasks. Seeing the excellent results and speed of FASTUS, SRI com-
pletely replaced TACITUS with FASTUS. It had a considerable influence on the
present evolution of parsing techniques. FASTUS proved that the local and cascade
approach was more efficient and much faster than other global analyses for informa-
tion extraction. It had a considerable number of followers.

9.9.3 Evaluation of Information Extraction Systems

The MUCs introduced a metric to evaluate the performance of information extrac-
tion systems using three figures: recall, precision, and the F -measure. This latter
metric, originally borrowed from library science, proved very generic to summarize
the overall effectiveness of a system. It has been used in many other fields of lan-
guage processing since then.

To explain these figures, let us stay in our library and imagine we want to retrieve
all the documents on a specific topic, say morphological parsing. An automatic sys-
tem to query the library catalog will, we hope, return some of them, but possibly
not all. On the other hand, everyone who has searched a catalog knows that we will
get irrelevant documents: morphological pathology, cell morphology, and so on. Ta-
ble 9.10 summarizes the possible cases into which documents fall.

Table 9.10. Documents in a library returned from a catalog query and split into relevant and
irrelevant books.

Relevant documents Irrelevant documents
Retrieved A B
Not retrieved C D

Recall measures how much relevant information the system has retrieved. It is
defined as the number of relevant documents retrieved by the system divided by
number of relevant documents in the library:

Recall =
A

A ∪ C
.

Precision is the accuracy of what has been returned. It measures how much of
the information is actually correct. It is defined as the number of correct documents
returned divided by the total number of documents returned.
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Precision =
A

A ∪ B
.

Recall and precision are combined into the F -measure, which is defined as the
harmonic mean of both numbers:

F =
2PR

P + R
.

The F -measure is a composite metric that reflects the general performance of
a system. It does not privilege precision at the expense of recall, or vice versa. An
arithmetic mean would have made it very easy to reach 50% using, for example, very
selective rules with a recall of 100 and a precision of 0.

Using a β-coefficient, it is possible to give an extra weight to either precision,
β > 1, or recall, β < 1, however:

F =
(β2 + 1)PR

β2P + R
.

Finally, a fallout figure is also sometimes used that measures the proportion of
irrelevant documents that have been selected.

Fallout =
B

B ∪ D
.

9.10 Further Reading

Partial or shallow parsing has attracted a considerable interest in the 1990s and has
renewed the field. This is largely due to the simplicity of the methods it involves.
It is also due to its recent successes in information extraction competitions such as
the MUCs (see, for instance, MUC-5 (1993)). The definition of the Named Entity
annotation can be read from the MUC-7 web page: www.itl.nist.gov/iaui/894.02/-
related_projects/muc/proceedings/muc_7_toc.html.

One of the first partial parsing systems is due to Ejerhed (1988). Appelt et al.
(1993) describe with eloquence the history and structure of the FASTUS system.
Abney (1994) has surveyed partial parsing with much detail and provides a compre-
hensive bibliography of 200 papers! Roche and Schabes (1997) and Kornai (1999)
are other sources for partial parsing techniques.

Partial parsing was the topic of a series of conferences on Computational Natural
Language Learning (CoNLL). Each year, the CoNLL conference organizes a “shared
task” where it provides an annotated training set. Participants can train their system
on this set, evaluate it on a common test set, and report a description of their algo-
rithms and results in the proceedings. In 1999, the shared task was dedicated to noun
group chunking (http://www.cnts.ua.ac.be/conll99/npb/); in 2000, it was extended to
other chunks (http://www.cnts.ua.ac.be/conll2000/chunking/), and in 2001, the topic
was the identification of clauses (http://www.cnts.ua.ac.be/conll2001/clauses/). The
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CoNLL sites and proceedings are extremely valuable as they provide data sets, an-
notation schemes, a good background literature, and an excellent idea of the state of
the art.

The development of partial parsing has been driven by applications without con-
cern for a specific linguistic framework. This is a notable difference from many other
areas of language processing, where theories abound. Functional and dependency
grammars (Tesnière 1966, Mel’cuk 1988) may offer background and provide read-
ers with a sound theory perspective.

Exercises

9.1. Complement the ELIZA program and add possible templates and answers.

9.2. Implement a multiword detector to detect dates in formats such as in English:
04/04/1997 or April 4, 1997, and in French: 20/04/1997 or 20 avril 1997.

9.3. Complement the noun group grammar and write down the vocabulary to recog-
nize the noun groups of the text:
The big tobacco firms are fighting back in the way that served them well for 40 vic-
torious years, pouring their wealth into potent, relentless legal teams. But they are
also starting to talk of striking deals – anathema for those 40 years, and a sure sign
that, this time, victory is less certain.
(The Economist, no. 8004, 1997).

9.4. See Exercise 9.3; do the same for verb groups.

9.5. Write a noun group grammar to parse the French text:
Les limites de la régulation de l’audiovisuel sont clairement définies aujourd’hui par
la loi. C’est le principal handicap du CSA : son champ d’action est extrêmement lim-
ité. Alors que la télévision numérique prend son essor, le CSA, dont les compétences
s’arrêtent au câble et à l’hertzien, n’a aucun pouvoir pour contrôler ou sanctionner
la télévision de demain formée par les chaînes satellitaires.
(Le Monde, mercredi 3 septembre 1997).

9.6. See Exercise 9.5; do the same for verb groups.

9.7. Write a noun group grammar to parse the German text:
Die Freude über das neue große Europa wird also nur von kurzer Dauer sein. Die
Probleme, die sich aus einer Union der 25 ergeben, dürften dagegen Regierungen
und Völker über Jahre hinweg in Atem halten. Zunächst einmal wird es alles andere
als leicht sein, die 10 neuen Mitgliedsstaaten zu integrieren. Die Migrationswellen,
die von ihnen ausgehen, werden der „alten“ EU reichlich Kopfschmerzen bereiten.
Vor allem stellt sich der Entscheidungsprozess innerhalb der Union künftig noch
weitaus schwieriger dar.
(Die Zeit, 30 April 2004).
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9.8. See Exercise 9.7; do the same for verb groups.

9.9. Adapt the Prolog code of Brill’s tagger from Chap. 6 so that it can detect noun
groups.

9.10. Write rules that detects some complex noun groups:
• Adjacent nouns groups linked by the prepositions of or for
• Noun group conjunctions

9.11. Find press wires on football matches on the Web and implement a program to
retrieve teams’ names and final scores. Use a base of football team names, and adopt
a cascaded architecture.
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Syntactic Formalisms

10.1 Introduction

Studies on syntax have been the core of linguistics for most of the 20th century.
While the goals of traditional grammars had been mostly to prescribe what the cor-
rect usage of a language is, the then-emerging syntactic theories aimed at an impartial
description of language structures. These ideas revolutionized the field. Research ac-
tivity was particularly intense in the years 1940–1970, and the focus on syntax was
so great that, for a time, it nearly eclipsed phonetics, morphology, semantics, and
other disciplines of linguistics.

Among all modern syntax researchers, Noam Chomsky has had a considerable
and indisputable influence. Chomsky’s seminal work, Syntactic Structures (1957), is
still considered by many as a key reading in linguistics. In his book (in Sect. 6.1),
Chomsky defined grammars as essentially a theory of [a language] that should be
(1) adequate: whose correctness should be measurable using corpora; (2) general:
extendible to a variety of languages, and, as far as possible, (3) simple. As goals, he
assigned grammatical rules to describe syntactic structures:

“These rules express structural relations among the sentences of the corpus
and the indefinite number of sentences generated by the grammar beyond
the corpus (predictions).”

More specifically (in Sect. 5.5), Chomsky outlined a formal model of syntax
under the form of grammars that was precise enough to be programmable and verifi-
able.

Chomsky’s ideas appealed to the linguistics community because they featured
an underlying analogy between human languages and computer – or formal – lan-
guages together with a mathematical formalism that was already used for compil-
ers. Chomsky came at a convergence point where advances in computer technology,
mathematical logic, and programming languages made his theory possible and ac-
ceptable. Chomsky’s theories on syntactic structures have originated much research
in the domain and an astounding number of followers, notably in the United States.
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In addition, his theories spurred a debate that went well beyond linguistic circles
reaching psychology and philosophy.

In the meantime, linguists in Europe developed other structural approaches and
also tried to derive generic linguistic structures. But instead of using the computer
operation as a model or to posit cognition universals, as Chomsky did, some of them
tried to study and expose examples from a variety of languages to prove their theo-
ries. The most prominent figure of the European school is Lucien Tesnière. Although
Tesnière’s work (1959, 2nd edn., 1966, both posthumous) is less known it is gaining
recognition and it is used with success in implementations of grammars and parsers
for English, French, German, and many other languages.

Many computational models of syntactic structures are presently based on the
notion of constituent. They are inherited from the American school and are a part of
Chomskyan grammars – although Chomsky does not limit grammars to a constituent
decomposition. The European school has its origin in an older tradition. It is based
on the notion of connections between words where each word of a sentence is linked
to another one under a relation of subordination or dependence. For this reason, these
syntactic models are also called dependency grammars. This chapter introduces both
structural approaches – constituency and dependency – and associated formalisms.

10.2 Chomsky’s Grammar in Syntactic Structures

Chomsky fractionates a grammar into three components. The first level consists of
phrase-structure (PS) rules expressing constituency. The second one is made of trans-
formation rules that complement PS rules. Transformations enable us to derive au-
tomatically new constructions from a given structure: a declarative form into an in-
terrogative or a negative one; an active sentence into a passive one. Transformation
rules apply to constituent structures or trees and describe systematic mappings onto
new structures.

Initially, PS and transformation rules used a vocabulary made of morphemes,
roots, and affixes, as well as complete words. The inflection of a verb with the past
participle tense was denoted [en + verb] where en represented the past participle
affix, for example, [en + arrive]. A third morphophonemic component handled the
final word generation, mapping forms such as [en + arrive] onto arrived.

10.2.1 Constituency: A Formal Definition

Constituency is usually associated with context-free grammars. Formally, such gram-
mars are defined by:

1. A set of designated start symbols, Σ, covering the sentences to parse. This set
can be reduced to a single symbol, such as sentence, or divided into more
symbols: declarative_sentence, interrogative_sentence.

2. A set of nonterminal symbols enabling the representation of the syntactic cate-
gories. This set includes the sentence and phrase categories.
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3. A set of terminal symbols representing the vocabulary: words of the lexicon,
possibly morphemes.

4. A set of rules, F , where the left-hand-side symbol of the rule is rewritten in the
sequence of symbols of the right-hand side.

Chomsky (1957) portrayed PS rules with an example generating the man hit the
ball. It has a straightforward equivalent in DCG:

sentence --> np, vp.
np --> t, n.
vp -- verb, np.
t --> [the].
n --> [man] ; [ball] ; etc.
verb --> [hit] ; [took] ; etc.

A set of such PS rules can generate sentences. Chomsky illustrated it using a
mechanism that resembles the top-down algorithm of Prolog (Fig. 10.1).

Sentence 0
NP + VP 1
T + N + VP 2
T + N + Verb + NP 3
the + N + Verb + NP 4
the + man + Verb + NP 5
the + man + hit + NP 6
the + man + hit + T + N 7
the + man + hit + the + N 8
the + man + hit + the + ball 9

Fig. 10.1. Generation of sentences.

Generation was the main goal of Chomsky’s grammars: to produce all potential
sentences – word and morpheme sequences – considered to be syntactically correct
or acceptable by native speakers. Chomsky introduced recursion in grammars to give
a finite set of rules an infinite capacity of generation.

From the initial goal of generation, computational linguists wrote and used gram-
mars to carry out recognition – or parsing – of syntactically correct sentences. A
sentence has then to be matched against the rules to check whether it falls within the
generative scope of the grammar. Parsing results in a parse tree – the sequence of
grammar rules that were applied. The parsing process can be carried out using:

• a top-down mechanism, which starts from the initial symbol – the sentence –
down to the words of the sentence to be parsed

• a bottom-up mechanism, which starts from the words of the sentence to be parsed
up to the sentence symbol
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Some parsing algorithms run more efficiently with a restricted version of context-
free grammars called the Chomsky normal form (CNF). Rules in the CNF have
either two nonterminal symbols to their right-hand side or one nonempty terminal
symbol:

lhs --> rhs1, rhs2.
lhs --> [a].

Any grammar can be converted into an equivalent CNF grammar using auxiliary
symbols and rules as for

lhs --> rhs1, rhs2, rhs3.

which is equivalent to

lhs --> rhs1, lhs_aux.
lhs_aux --> rhs2, rhs3.

The equivalence is said to be weak because the resulting grammar generates the same
sentences but does not yield exactly the same parse trees.

10.2.2 Transformations

The transformational level consists of the mechanical rearrangement of sentences
according to some syntactic relations: active/passive, declarative/interrogative, etc.
A transformation operates on a sentence with a given phrase structure and converts it
into a new sentence with a new derived phrase structure. Transformations use rules
– transformational rules or T -rules – to describe the conversion mechanism as:

T1: np1, aux, v, np2 →
np2, aux, [be], [en], v, [by], np1

which associates an active sentence to its passive counterpart. The active part of the
rule matches sentences such as

the man will hit the ball

and its passive part enables us to generate the equivalent passive sentence:

the ball will be (en hit) by the boy

where (en hit) corresponds to the past participle of verb to hit. An additional trans-
formational rule permutes these two elements:

T2: affix, v →
v, affix, #

where # marks a word boundary. Once applied, it yields

the ball will be hit en # by the boy
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Hit en # is then rewritten into hit by morphophonemic rules. Finally, the trans-
formational process yields:

the ball will be hit by the boy

A tree-to-tree mapping as shown in Fig. 10.2 can also reflect transformation rules.

S S

NP1 V P NP2 V P

V erb NP2 V erb PP

Aux V Aux be en V by NP2

Fig. 10.2. A tree-to-tree mapping representing the active/passive transformational rule.

Other common transformations include (Chomsky 1957):

• Negations. John comes → John doesn’t come.
• Yes/no questions. they arrive → do they arrive; they have arrived → have they

arrived; they can arrive → can they arrive; they arrived → did they arrive
• Interrogatives. John ate an apple → did John eat an apple; John ate an apple →

what did John eat; John ate an apple → who ate an apple
• Conjunction. (the scene of the movie was in Chicago; the scene of the play was

in Chicago) → the scene of the movie and of the play was in Chicago.
• Topicalization. that is, moving a constituent in front of a sentence to emphasize

it. the waiter brought the meal to the table → to the table, the waiter brought the
meal; I don’t like this meal → this meal, I don’t like.

In Chomsky’s formalism, PS rules are written so that certain generated sentences
require a transformation to be correct. Such transformations are said to be obligatory.
An example is given by the affix permutation rule (T2). Other rules are optional, such
as the passive/active transformation (T1). PS rules and obligatory transformations
account for the “kernel of a language” and generate “kernel sentences”. All other
sentences can be unfolded and mapped onto this kernel using one or more transfor-
mations.

According to Chomsky, transformations simplify the description of a grammar,
and make it more compact. Writing a grammar only requires the phrase structure
of kernel sentences, and all others are derived from transformations. Later Chomsky
related kernel sentences to a deep structure, while transformed sentences correspond
to a surface structure. Transformations would then map the surface structure of a
sentence onto its deep structure. The deep structure would consist of a set of oblig-
atory transformations and a core phrase structure on which no transformation could
be carried out.
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10.2.3 Transformations and Movements

Transformation theory evolved into the concept of movement (Chomsky 1981). A
movement is a sentence rearrangement where a constituent is moved to another loca-
tion. The moved constituent leaves a trace: an empty symbol representing its initial
location. Passives correspond to a composition of two movements: one that moves
the subject noun phrase into the position of a prepositional phrase headed by by;
and another that moves the object noun phrase into the empty subject position (Ta-
ble 10.1).

Table 10.1. Movements to obtain the passive of sentence The man hit the ball. Traces are
represented by —. Original positions of traces are in bold.

Movements Traces Passives
First movement The man hit . . . . . . — is hit by the man
Second movement . . . hit the ball The ball is hit —

Paradigms of movement are questions beginning with an interrogative pronoun
or determiner: the wh-movements. A wh-word – who, which, what, where – is moved
to the beginning of the sentence to form a question. Consider the sentence John ate
an apple in the dining room. According to questions and to the wh-word type in
front of the question, a trace is left at a specific location in the original sentence
(Table 10.2). Traces correspond to noun phrases.

Table 10.2. Questions beginning with a wh-word and their traces (—).

Questions Traces
Who ate an apple in the dining room? — ate an apple in the dining room
What did John eat in the dining room? John ate — in the dining room
Which apple did John eat in the dining room? John ate — in the dining room
Where did John eat an apple? John ate an apple —

Transformations or movements use a syntactic model of both the original phrase
– or sentence – and its transformed counterpart. These models form the left and right
members of a T -rule. Applying a transformation to a phrase or conversely unfolding
a transformation from it, requires knowing its tree structure. In consequence, trans-
formational rules or movements need a prior PS analysis before being applied.

10.2.4 Gap Threading

Gap threading is a technique to parse wh-movements (Pereira 1981, Pereira and
Shieber 1987). Gap threading uses PS rules that consider the sentence after the move-
ment has occurred. This requires new rules to account for interrogative pronouns or
interrogative determiners moved in front of sentence, as for:
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John ate an apple
What did John eat?

with a rule to parse the declaration

s --> np, vp.

and a new one for the question

s --> [what, did], np, vp.

One aim of gap threading is to keep changes in rules minimal. Thus the trace – or
gap – should be handled by rules similar to those of a sentence before the movement.
The rule describing a verb phrase with a transitive verb should remain unchanged:

vp --> v, np.

with the noun phrase symbol being possibly empty in case of a gap.

np --> [].

However, such a rule is not completely adequate because it would not differen-
tiate a gap: the absence of a noun phrase resulting from a movement, from the pure
absence of a constituent. Rules could insert empty lists wrongly in sentences such as

John ate

To handle traces properly, gap threading keeps a list of the moved constituents
– or fillers – as the parsing mechanism reads them. In our example, fillers are wh-
terms. When a constituent contains a moved term, it is stored in the filler list. When
a constituent contains a gap – a missing noun phrase – a term is reclaimed from the
head of the filler list.

Gap threading uses two lists as arguments that are added to each constituent of
the DCG rules. These lists act as input and output of gaps in the current constituent,
as in:

s(In, Out) --> np(In, Out1), vp(Out1, Out).

At a given point of the analysis, the first list holds fillers that have been stored
before, and the second one returns the remaining fillers once gaps have been filled in
the constituent.

In the sentence

What did John eat —?

the verb phrase eat — contains a gap. Before processing this phrase, the filler list
must have accumulated what, which is removed when the verb phrase is completely
parsed. Hence, input and output arguments of the vp constituent must be:

% vp(In, Out)
vp([what], [])
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or, to be more general,

vp([what | T], T)

The noun phrase rule handling the gap accepts no word as an input (because it is
a gap). Its right-hand side is then an empty list. The real input is received from the
filler list. The rule collects the filler from the first argument of np and returns the
resulting list in the second one:

np([what | T], T) --> [].

The whole set of rules is finally:

s(In, Out) -->
[what, did],
np([ what | In], Out1),
vp(Out1, Out).

s(In, Out) --> np(In, Out1), vp(Out1, Out).

np(X, X) --> [’John’]. % no gap here
np(X, X) --> det, n. % no gap here
np([what | T], T) --> []. % the gap

vp(In, Out) --> v, np(In, Out).

v --> [eat]; [ate].

det --> [an].

n --> [apple].

When parsing a sentence with a movement, initial and final filler lists are set to
empty lists:

?- s([], [], [what, did, ’John’, eat], []).
Yes

as in the initial declaration:

?- s([], [], [’John’, ate, an, apple], []).
Yes

10.2.5 Gap Threading to Parse Relative Clauses

Gap threading can also be used to parse relative clauses. Relative clauses are sen-
tences complementing a noun phrase whose subject or object has been replaced by a
relative pronoun. Consider the noun phrase

The meal that the waiter brought
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The rule describing such a phrase is

np --> ngroup, relative

where ngroup maps the meal and relative maps that the waiter brought.
The modified sentence corresponding to the relative clause here is

The waiter brought the meal

where the noun phrase the meal has been moved from its object position to the front
of the relative and has been replaced by the object pronoun that (Fig. 10.3). The
phrase

The waiter who brought the meal

is similar, but the movement occurs on the subject noun phrase, which is replaced by
subject pronoun who.

NP

NGroup Relative

Det Noun S

NP V P

NGroup Relative

Det Noun [] V erb T race

The meal that the waiter brought

Fig. 10.3. The parse tree of The meal that the waiter brought with gap threading.

Let us write a grammar using gap threading to parse such noun phrases. The top
rule has two new variables to hold fillers:

np(In, Out) -->
ngroup(In, Out1),
relative(Out1, Out).

The relative clause is a sentence that starts with a pronoun, and this pronoun is
stored in the filler input list of the sentence symbol:

relative(In, Out) --> [that], s([that | In], Out).
relative(In, Out) --> [who], s([who | In], Out).

There might also be no relative clause
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relative(X, X) --> [].

When we encounter a trace, a noun phrase is missing. The head pronoun is then
removed from the filler list

np([PRO | T], T) --> [].

The rest of the grammar is straightforward

s(In, Out) --> np(In, Out1), vp(Out1, Out).

vp(In, Out) --> v, np(In, Out).

ngroup(X, X) --> det, n.

det --> [the].
n --> [waiter].
n --> [meal].
v --> [brought].

When launching the parse, both filler lists are empty

?- np([], [],[the, meal, that, the, waiter, brought],
[]).

Yes

?- np([], [], [the, waiter, who, brought, the, meal],
[]).

Yes

In the examples above, we have made no distinction between object and subject
pronouns. The program could have been refined to take this difference into account.

10.3 Standardized Phrase Categories for English

The aim of a standard for phrase categories is to define an annotation set that would
be common to people working on syntax. Such a standard would facilitate corpus and
program sharing, assessment, and communication between computational linguists.
Currently, there is no universally accepted standard. Defining an annotation set re-
quires finding a common ground on the structure or the denomination of a specific
group of words. It proves to be more difficult than expected. There is a consensus on
main categories but details are sometimes controversial.

Most annotation schemes include phrase categories mapping the four main parts
of speech, namely nouns, verbs, adverbs, and adjectives. Category names correspond
to those of constituent heads:

• Noun phrases (NP), phrases headed by a noun.
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• Verb phrases (VP), phrases headed by a verb together with its objects.
• Adjective phrase (AdjP), a phrase headed by an adjective, possibly with modi-

fiers.
• Adverbial phrase (AdvP), a phrase headed by an adverb.
• Most annotation sets also feature prepositional phrases (PP): noun phrases be-

ginning with a preposition.

The Penn Treebank (Marcus et al. 1993) is a corpus annotated with part-of-
speech labels. Parts of it are also fully bracketed with syntactic phrase categories, and
it was one of the first corpora widely available with such an annotation. Table 10.3
shows its set of phrase labels.

Table 10.3. The Penn Treebank phrase labels. After Marcus et al. (1993).

Categories Description
1. ADJP Adjective phrase
2. ADVP Adverb phrase
3. NP Noun phrase
4. PP Prepositional phrase
5. S Simple declarative clause
6. SBAR Clause introduced by subordinating conjunction or 0 (see below)
7. SBARQ Direct question introduced by wh-word of wh-phrase
8. SINV Declarative sentence with subject-aux inversion
9. SQ Subconstituent of SBARQ excluding wh-word of wh-phrase
10. VP Verb phrase
11. WHADVP wh-adverb phrase
12. WHNP wh-noun phras
13. WHPP wh-prepositional phrase
14. X Constituent of unknown or uncertain category

Null elements
1. * “Understood” subject of infinitive or imperative
2. 0 Zero variant of that in subordinate clauses
3. T Trace – marks position where moved wh-constituent is interpreted
4. NIL Marks position where preposition is interpreted in pied-piping context

As an example, Fig. 10.4 shows the bracketing of the sentence

Battle-tested industrial managers here always buck up nervous newcomers
with the tale of the first of their countrymen to visit Mexico, a boatload of
samurai warriors blown ashore 375 years ago.

in the Penn Treebank, where pseudo-attach denotes an attachment ambiguity
for VP-1. In effect, blown ashore can modify either boatload or samurai warriors.
Both attachments mean roughly the same thing, and there is no way to remove the
ambiguity. In this bracketing, blown ashore has been attached arbitrarily to warriors,
and a pseudo-attach has been left to indicate a possible attachment to boatload.
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( (S
(NP Battle-tested industrial managers

here)
always

(VP buck
up
(NP nervous newcomers)
(PP with

(NP the tale
(PP of

(NP (NP the
(ADJP first

(PP of
(NP their countrymen)))

(S (NP *)
to
(VP visit

(NP Mexico))))
,
(NP (NP a boatload

(PP of
(NP (NP samurai warriors)

(VP-1 blown
ashore
(ADVP (NP 375 years)

ago)))))
(VP-1 *pseudo-attach*))))))))

.)

Fig. 10.4. Bracketed text in the Penn Treebank. After Marcus et al. (1993, p. 325).

Bracketing of phrases is done semiautomatically. A first pass uses an automatic
parser. The output is then complemented or corrected by hand by human annotators.

10.4 Unification-Based Grammars

10.4.1 Features

In the examples above, there is no distinction between types of noun phrases. They
appeared under a unique category:np. However, noun phrases are often marked with
additional grammatical information, that is, depending on the language, a person, a
number, a gender, a case, etc. In German, cases correspond to a specific inflection
visible on the surface form of the words (Table 10.4). In English and French, noun
phrases are inflected with plural, and in French with gender. We saw in Chap. 5 that
such grammatical characteristics are called features. Case, gender, or number are
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Table 10.4. Inflection imposed to noun group der kleine Ober ‘the small waiter’ by the case
feature in German.

Cases Noun groups
Nominative der kleine Ober
Genitive des kleinen Obers
Dative dem kleinen Ober
Accusative den kleinen Ober

features of the noun that are also shared by the components of the noun phrase to
which it belongs.

If we adopt the generative framework, it is necessary to take features into account
to have correct phrases. We can get a picture of it with the German cases and a very
simple noun phrase rule:

np --> det, adj, n.

Since we do not distinguish between np symbols, the rule will output ungram-
matical phrases as:

?-np(L, []).
[der, kleinen, Ober]; %wrong
[der, kleinen, Obers]; %wrong
[dem, kleine, Obers] %wrong
...

To avoid such a wrong generation, we need to consider cases and other features
and hence to refine our model. In addition, beyond generation features are necessary
in many applications such as spelling or grammar checking, style critique, and so on.

A solution could be to define new noun phrase symbols corresponding to cases
such as np_nominative, np_genitive, np_dative, np_accusative.
We need others to consider number, np_nominative_singular, np_nomi-
native_plural, . . . , and it is not over, because of gender: np_nominative_-
singular_masc, np_nominative_singular_fem, . . . . This process leads
to a division of main categories, such as noun phrases, nouns, and adjectives, into
subcategories to account for grammatical features.

10.4.2 Representing Features in Prolog

Creating a new category for each grammatical feature is clumsy and is sometimes
useless in applications. Instead of it, features are better represented as arguments
of main grammatical categories. This is straightforward in Prolog using the DCG
notation. To account for cases in noun phrases, let us rewrite np into:

np(case:C)
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where the C value is a member of list [nom, gen, dat, acc] denoting nomi-
native, genitive, dative, and accusative cases.

We can extend the number of arguments to cover the rest of grammatical infor-
mation. Prolog functors then represent main categories such as noun phrases, and
arguments represent the grammatical details. Arguments are mapped onto feature
structures consisting of pairs feature/values as for gender, number, case, person, and
type of determiner:

np(gend:G, num:N, case:C, pers:P, det:D)

Using Prolog’s unification, features are easily shared among constituents making
up a noun phrase as in the rule:

np(gend:G, num:N, case:C, pers:P, det:D) -->
det(gend:G, num:N, case:C, pers:P, det:D),
adj(gend:G, num:N, case:C, pers:P, det:D),
n(gend:G, num:N, case:C, pers:P).

Let us exemplify it with a small fragment of the German lexicon:

det(gend:masc, num:sg, case:nom, pers:3, det:def) -->
[der].

det(gend:masc, num:sg, case:gen, pers:3, det:def) -->
[des].

det(gend:masc, num:sg, case:dat, pers:3, det:def) -->
[dem].

det(gend:masc, num:sg, case:acc, pers:3, det:def) -->
[den].

adj(gend:masc, num:sg, case:nom, pers:3, det:def) -->
[kleine].

adj(gend:masc, num:sg, case:gen, pers:3, det:def) -->
[kleinen].

adj(gend:masc, num:sg, case:dat, pers:3, det:def) -->
[kleinen].

adj(gend:masc, num:sg, case:acc, pers:3, det:def) -->
[kleinen].

n(gend:masc, num:sg, case:nom, pers:3) --> [’Ober’].
n(gend:masc, num:sg, case:gen, pers:3) --> [’Obers’].
n(gend:masc, num:sg, case:dat, pers:3) --> [’Ober’].
n(gend:masc, num:sg, case:acc, pers:3) --> [’Ober’].

To consult this lexicon, Prolog needs a new infix operator “:” that we define
using the op/3 built-in predicate:

:- op(600, xfy, ’:’).
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And our grammar generates correct noun phrases only:

?- np(_, _, _, _, _, L, []).
L = [der, kleine, ’Ober’] ;
L = [des, kleinen, ’Obers’] ;
L = [dem, kleinen, ’Ober’] ;
L = [den, kleinen, ’Ober’] ;

No

10.4.3 A Formalism for Features and Rules

In the previous section, we directly wrote features as arguments of Prolog predicates.
More frequently, linguists use a notation independent of programming languages,
which is referred to as unification-based grammars. This notation is close to Prolog
and DCGs, however, and is therefore easy to understand. The noun phrase rule

np(gend:G, num:N, case:C, pers:P, det:D) -->
det(gend:G, num:N, case:C, pers:P, det:D),
adj(gend:G, num:N, case:C, pers:P, det:D),
n(gend:G, num:N, case:C, pers:P).

is represented as:

NP → DET ADJ N⎡
⎢⎢⎢⎢⎣

gend : G
num : N
case : C
pers : P
det : D

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

gend : G
num : N
case : C
pers : P
det : D

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

gend : G
num : N
case : C
pers : P
det : D

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

gend : G
num : N
case : C
pers : P

⎤
⎥⎥⎦

Rules of a grammar describing complete sentences are similar to those of DCGs.
They consist, for example, of:

S → NP V P⎡
⎣num : N

case : nom
pers : P

⎤
⎦ [

num : N
pers : P

]

V P → V[
num : N
pers : P

] ⎡
⎣ trans : i

num : N
pers : P

⎤
⎦

V P → V NP[
num : N
pers : P

] ⎡
⎣ trans : t

num : N
pers : P

⎤
⎦ [case : acc]
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NP → Pronoun⎡
⎢⎢⎣

gen : G
num : N
pers : P
case : C

⎤
⎥⎥⎦

⎡
⎢⎢⎣

gen : G
num : N
pers : P
case : C

⎤
⎥⎥⎦

with lexicon entries such as:

DET → der⎡
⎢⎢⎣

gend : masc
num : sg
case : nom
det : def

⎤
⎥⎥⎦

10.4.4 Features Organization

A feature structure is a set of pairs consisting of a feature name – or attribute – and
its value. ⎡

⎢⎢⎢⎣
feature1 : value1

feature2 : value2

...
featuren : valuen

⎤
⎥⎥⎥⎦

Unlike arguments in Prolog or DCGs, the feature notation is based solely on the
name and not on the position of the argument. Hence, both⎡

⎣ gen : fem
num : pl
case : acc

⎤
⎦ and

⎡
⎣num : pl

case : acc
gen : fem

⎤
⎦

denote the same feature structure. Feature structures can be pictured by a graph as
shown in Fig. 10.5.

fem

pl

acc

gender

number

case

Fig. 10.5. Graph representing a feature structure.

The value of a feature can be an atomic symbol, a variable, or another feature
structure to yield a hierarchical organization as in:
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⎢⎢⎣

f1 : v1

f2 :

⎡
⎣ f3 : v3

f4 :

[
f5 : v5

f6 : v6

]⎤
⎦

⎤
⎥⎥⎦

whose corresponding graph is shown in Fig. 10.6.

v1

v3

v5

v6

f1

f2 f3

f4 f5

f6

Fig. 10.6. Graph corresponding to embedded feature structures.

Grouping a set of features into a substructure enables the simplification of nota-
tions or rules. A feature denoted agreement can group gender, number, and per-
son, and can be encoded as a single structure. German nominative and accusative
pronouns er ‘he’ and ihn ‘him’ can then be represented as:

Pronoun → er⎡
⎢⎢⎣agreement :

⎡
⎣gender : masc

number : sg
pers : 3

⎤
⎦

case : nom

⎤
⎥⎥⎦

Pronoun → ihn⎡
⎢⎢⎣agreement :

⎡
⎣ gender : masc

number : sg
pers : 3

⎤
⎦

case : acc

⎤
⎥⎥⎦

which enables us to simplify the noun phrase rule in:

NP → Pronoun[
agreement : X
case : C

] [
agreement : X
case : C

]
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We can even push categories into structures and rewrite the previous rule as⎡
⎣ cat : np

agreement : X
case : C

⎤
⎦ →

⎡
⎣ cat : pronoun

agreement : X
case : C

⎤
⎦

Unlike the case for DCGs, unspecified or nonshared features are simply omitted
in unification-based grammars. There is no need for an equivalent of the anonymous
variable then.

10.4.5 Features and Unification

Unification of feature structures is similar to term unification of Prolog but is more
general. It is a combination of two recursive operations:

• Structures merge the set of all their features, checking that identical features have
compatible values.

• Variables unify with values and substructures.

Feature structure unification is usually denoted ∪.
Unification results in a merger of features as in

[
feature1 : v1

feature2 : v2

]
∪

[
feature2 : v2

feature3 : v3

]
=

⎡
⎣feature1 : v1

feature2 : v2

feature3 : v3

⎤
⎦ .

Variable unification considers features of same name and applies to values, other
variables, or recursive feature structures, just as in Prolog but regardless of their
position. Here are a couple of examples:

• [feature1 : v1] and [feature1 : v2] fail to unify if v1 �= v2.

•

[
f1 : v1

f2 : X

]
∪

⎡
⎣ f5 : v5

f2 :

[
f3 : v3

f4 : v4

]⎤
⎦ =

⎡
⎢⎢⎣

f1 : v1

f2 :

[
f3 : v3

f4 : v4

]
f5 : v5

⎤
⎥⎥⎦

•

[
f1 : v1

f2 : X

]
∪

⎡
⎣ f5 : X

f2 :

[
f3 : v3

f4 : v4

]⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

f1 : v1

f2 :

[
f3 : v3

f4 : v4

]

f5 :

[
f3 : v3

f4 : v4

]
⎤
⎥⎥⎥⎥⎦

In the last example, both features f2 and f5 result of the unification of X and are
therefore identical. They are said to be re-entrant. However, the structure presentation
does not make it clear because it duplicates the X value as many times as it occurs
in the structure: twice here. Different structures could yield the same result, as with
the unification of
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⎣ f1 : v1

f2 :

[
f3 : v3

f4 : v4

]⎤
⎦ and

⎡
⎣f5 :

[
f3 : v3

f4 : v4

]
f2 : X

⎤
⎦

where feature f2 and f5 have (accidentally) the same value.
To improve the structure presentation, identical features are denoted with a label.

Here [1] indicates that f2 and f5 are the same:⎡
⎢⎢⎣

f1 : v1

f2 : [1]

[
f3 : v3

f4 : v4

]
f5 : [1]

⎤
⎥⎥⎦

and Fig. 10.7 shows the corresponding graph.

v1

v3

v4

f1

f2

f5

f3

f4

Fig. 10.7. Graph with re-entrant feature structures.

10.4.6 A Unification Algorithm for Feature Structures

Unification of feature structures is close to that of terms in Prolog. However, feature
structures provide partial specifications of the entities they represent, while Prolog
terms are complete. Feature structure unification is merely a union of compatible
characteristics, as in the example

[case : nom] ∪ [gender : masc] =

[
case : nom
gender : masc

]

where both structures merge into a more specific set. As is, corresponding Pro-
log terms struct(case: nom) and struct(gender: masc)would fail to
unify.

There are possible workarounds. Given a syntactic category, we could itemize all
its possible attributes and map them onto a Prolog term. We would have to assign
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each feature to a specific argument rank, for instance, case to the first argument,
gender to the second one, and so on. We would then fill the specified arguments
and leave the others empty using the anonymous variable ‘_’. For the example above,
this would yield terms

struct(case: nom, gender:_)

and

struct(case: _, gender: masc)

that unify properly:

?- X = struct(case: nom, gender:_), Y =
struct(case: _, gender: masc), X = Y.

X = struct(case: nom, gender: masc)
Y = struct(case: nom, gender: masc)

However, when there are many features and hierarchical structures such a method
could be tedious or difficult.

A better idea is to use incomplete lists. Incomplete lists have their tails uninstan-
tiated as [a, b, c | X]. Such lists can represent partial structures as [case:
nom | X] or [gender: masc | Y] and be expanded through a Prolog unifica-
tion. Merging both feature structures is simple. It consists in the unification of X with
[gender: masc | Y]:

?- STRUCT = [case: nom | X], X = [gender: masc | Y].
STRUCT = [case: nom, gender: masc | Y]

To be more general, we will use the anonymous variable as a tail. Convert-
ing a feature structure then consists in representing features as members of a list
where closing brackets are replaced by | _]. Hence, structures [case : nom] and
[gender : masc] are mapped onto [case: nom | _] and [gender: masc |
_], and their unification yields [case: nom, gender: masc | _]. Hierar-
chical features as: ⎡

⎢⎢⎢⎢⎣
cat : np

agreement :

⎡
⎣ gender : masc

number : sg
pers : 3

⎤
⎦

case : acc

⎤
⎥⎥⎥⎥⎦

are represented by embedded incomplete lists:

[cat: np,
agreement: [gender: masc, number: sg, pers: 3 | _],
case: acc | _]
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Let us now implement the unification algorithm for feature structures due to
Boyer (1988). The unif/2 predicate consists of a fact expressing the end of unifi-
cation – both structures are the same – and two main rules:

• The first rule considers the case where the heads of both lists represent features
of the same name. The rule unifies the feature values and unifies the rest.

• When feature names are different, the second rule uses a double recursion. The
first recursion unifies the tail of the first list with the head of the second list. It
yields a new list, Rest3, which is the unification result minus the head features
F1 and F2. The second recursion unifies the rest of the second list with the list
made up of the head of the first list and Rest3:

:- op(600, xfx, ’:’).

unif(FStr, FStr) :-
!.

unif([F1:V1 | Rest1], [F1:V2 | Rest2]) :-
!,
unif(V1, V2),
unif(Rest1, Rest2).

unif([F1:V1 | Rest1], [F2:V2 | Rest2]) :-
F1 \= F2,
unif(Rest1, [F2:V2 | Rest3]),
unif(Rest2, [F1:V1 | Rest3]).

Consulting unif/2 and querying Prolog with:

?- X = [case: nom | _], Y =[gender: masc | _],
unif(X, Y).

results in:

X = [case: nom, gender: masc | _]
Y = [gender: masc, case: nom | _]

10.5 Dependency Grammars

10.5.1 Presentation

Dependency grammars form an alternative to constituent-based theories. These
grammars describe a sentence’s structure in terms of syntactic links – or connections
or dependencies – between its words (Tesnière, 1966). Each link reflects a dominance
relation (conversely a dependence) between a headword and a dependent word. Ex-
amples of simple dependencies tie a determiner to its noun, or a subject noun to its
main verb. Dependency links are pictured by arrows flowing from headwords to their
dependents (or the reverse).
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In noun groups, determiners and adjectives depend on their noun; adverbs depend
on their adjective (Fig. 10.8), as in

The very big cat

where the noun cat is the head of the and big and the adjective big is the head of
very. In addition, cat is the head – or the root – of the whole phrase.

The big catvery 

Fig. 10.8. Dependency graph of the noun group The very big cat.

Figure 10.9 shows an alternate equivalent representation of the dependencies.

The big 

cat

very 

Fig. 10.9. Tree representing dependencies in the noun group The very big cat.

According to the classical dependency model, each word is the dependent of ex-
actly one head with the exception of the head of the sentence. Conversely, a head may
have several dependents (or modifiers). This means a dependency graph is equivalent
to a tree. Figure 10.10 shows a graph representing the structure of a simple sentence
where determiners depend on their noun; nouns depend on the main verb, which is
the root of the sentence. Tesnière used the word stemma – garland or stem in Greek
– to name the graphic representation of these links.

The waiter brought the meal 

Fig. 10.10. Dependency graph or stemma of the sentence The waiter brought the meal.

Although dependency and constituency are often opposed, stemmas embed sorts
of constituents that Tesnière called nœuds. Deriving a nœud from a dependency graph
simply consists in taking a word, all its dependents, and dependents of dependents
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recursively. It then corresponds to the subtree below a certain word.1 And in many
cases stemmas and phrase-structure trees yield equivalent structures hinting that de-
pendency and constituency are in fact comparable formalisms.

There are a couple of differences, however. One is the importance given to words
in dependency grammars. There are no intermediate representation symbols such as
phrases of constituent grammars. Syntactic relations involve words only, and nodes
in stemmas are purely lexical.

Another difference is that dependency grammars do not need a fixed word order
or word contiguity in the nœuds to establish links. In that sense dependency theory is
probably more suited than constituent grammars to model languages where the word
order is flexible. This is the case for Latin, Russian, and German to a lesser extent.
Figure 10.11 gives an example with the sentence (Bröker 1998):

Den Mann hat der Junge gesehen
The man/obj has the boy/subj seen ‘The boy has seen the man.’

where positions of noun groups den Mann and der Junge can be inverted and yield
another acceptable sentence: Der Junge hat den Mann gesehen. Meaning is preserved
because functions of noun groups are marked by cases, nominative and accusative
here.

Den Mann hat der Junge gesehen

Fig. 10.11. Dependency graph of Den Mann hat der Junge gesehen, modified from Bröker
(1998).

In the example above, stemmas of both sentences are the same, whereas a phrase-
structure formalism requires more rules to take the word order variability into ac-
count. Modeling the verb phrase needs two separate rules to describe the position of
the accusative noun group

hat den Mann gesehen

and the nominative one

hat der Junge gesehen

V P → AUX NP V[
num : N
pers : P

] [
num : N
pers : P

]
[case : acc]

⎡
⎣ tense : pastpart

num : N
pers : P

⎤
⎦

1 Nœud is the French word for node. It shouldn’t be mistaken with a node in a graph, which
is a single element. Here a nœud is a whole subtree.
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and
V P → AUX NP V[

num : N
pers : P

] [
num : N
pers : P

]
[case : nom]

⎡
⎣ tense : pastpart

num : N
pers : P

⎤
⎦

When word order shows a high degree of freedom, the constituent structure tends
to become combinatorial making grammars resorting on it impracticable. For this
reason, many linguists, especially in Europe, believe dependency grammar to be a
more powerful formalism than constituency. On the contrary, constituency is a prop-
erty of English that possibly makes dependency less useful in this language.

10.5.2 Properties of a Dependency Graph

After Tesnière, followers extended or modified the definition of dependency gram-
mars. This has led to variations from the original theory. However, some common
principles have emerged from the variety of definitions. We expose here features that
are the most widely accepted. They result in constraints on dependency graphs. As
for constituent grammars, dependency grammars also received formal mathematical
definitions.

The first principle is that dependency graphs are acyclic. This means that there is
no loop in the graph. Figure 10.12 shows two structures that are not acceptable.

W1 W2 W3 W4 W5

Fig. 10.12. Cyclic dependencies in a graph.

The second principle is that dependency graphs should be connected. This corre-
sponds to the assumption that a sentence has one single head, the root, to which all the
other words are transitively connected. Figure 10.13 shows a sentence w1w2w3w4w5

with two nonconnected subgraphs.

W1 W2 W3 W4 W5

Fig. 10.13. A nonconnected graph spanning sentence w1w2w3w4w5.

The third principle is called projectivity or adjacency. It assumes that all the
dependents of a word, direct and indirect, form a contiguous sequence. This means
that each pair of words (Dep, Head) in the graph, which is directly or transitively
connected, is only separated by direct or indirect dependents of Head or Dep. All
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the words in-between are hence dependents of Head. In a dependency graph, pro-
jectivity results in the absence of crossing arcs.

The projectivity principle is much more controversial that the two first ones. Al-
though less frequent than projective examples, there are many cases of nonprojective
sentences. Figures 10.14 and 10.15 show two examples in English and Latin. The
sentence What would you like me to do? shows a dependency link between what and
do. The projectivity principle would require that would, you, and like are dependent
of do, which is untrue. The sentence is thus nonprojective.

The Latin verse Ultima Cumaei venit iam carminis aetas ‘The last era of the
Cumean song has now arrived’ shows a dependency link between carminis and
Cumaei, but neither venit nor iam are dependent of carminis. We can then better
reformulate projectivity as a general principle that suffers exceptions.

you ? 

<root>

like 

would

me

do

to What 

Fig. 10.14. Dependency graph of What would you like me to do? After Järvinen and
Tapanainen (1997).

Cumaei 
Cumean

<root>

venit 
has come

iam 
now 

aetas 
age 

carminis
song Ultima

Last

Fig. 10.15. Dependency graph of Ultima Cumaei venit iam carminis aetas. ‘The last era of the
Cumean song has now arrived’ (Vergil, Eclogues IV.4). After Covington (1990).
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10.5.3 Valence

Tesnière and others stressed the importance of verbs in European languages: main
verbs have the highest position in the node hierarchy and are the structural centers of
sentences. All other types of phrases are organized around them. Hence verbs tend
to impose a certain structure to sentences. Connected to this observation, a major
claim of dependency grammars is that verbs have specific complement patterns. Verb
complements in a broad sense include groups that accompany it: subject, objects, and
adjuncts.

Different verbs combine differently with their complements. Certain comple-
ments are essential to a verb, like its subject, most of the time. Essential comple-
ments cannot be removed from the sentence without making it incorrect or incom-
plete. Other complements are optional – or circumstantial – like adjuncts that give
information on space, time, or manner. Removing them would modify the meaning
of the sentence but would still result into something acceptable.

The valence is the number of essential complements of a verb. Using an analogy
with chemistry, valence is the attraction power of a verb for potential complements
and a specific property of each verb. Just as for chemical elements, the valence is
not a strict requirement but rather reflects a sort of most current, stable construction.
Common valence values are (Table 10.5):

• 0, for verbs describing weather, it’s raining, snowing
• 1, corresponding to the subject of intransitive verbs, he’s sleeping, vanishing
• 2, the subject and object of transitive verbs, she read this book.
• 3, the subject and two objects – direct and indirect objects – of ditransitive verbs,

Elke gave a book to Wolfgang, I said it to my sister.
• 4, the subject, object, source, and destination of certain verbs like move or shift:

I moved the car from here to the street (Heringer 1993).

Table 10.5. Valence values and examples, where iobject denotes the indirect object.

Valences Examples Frames
0 it’s raining raining []
1 he’s sleeping sleeping [subject : he]

2 she read this book read

»
subject : she
object : book

–

3 Elke gave a book to Wolfgang gave

2
4 subject : Elke

object : book
iobject : Wolfgang

3
5

4 I moved the car from here to the street moved

2
664

subject : I
object : car
source : here
destination : street

3
775
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From a quantitative definition: the number of slots or arguments attached to a
verb and filled with its essential complements, valence is also frequently extended
to cover qualitative aspects. It includes the grammatical form and the meaning of
these slots. Grammatical properties include possible prepositions and syntactic pat-
terns allowed to each complement of a verb: noun group, gerund, or infinitive. Many
dictionaries, especially learners’ dictionaries, itemize these patterns, also referred to
as subcategorization frames. Tables 10.6–10.8 summarize some verb–complement
structures.

Table 10.6. Verb–complement structures in English.

Verb Complement structure Example
slept None (Intransitive) I slept
bring NP The waiter brought the meal
bring NP + to + NP The waiter brought the meal to the patron
depend on + NP It depends on the waiter
wait for + NP + to + VP I am waiting for the waiter to bring the meal
keep VP(ing) He kept working
know that + S The waiter knows that the patron loves fish

Table 10.7. Verb–complement structures in French.

Verb Complement structure Example
dormir None (Intransitive) J’ai dormi
apporter NP (Transitive) Le serveur a apporté un plat
apporter NP + à + NP Le serveur a apporté un plat au client
dépendre de + NP Ça dépend du serveur
attendre que + S(Subjunctive) Il a attendu que le serveur apporte le plat
continuer de + VP(INF) Il a continué de travailler
savoir que + S Le serveur sait que le client aime le poisson

In addition, typical complements of a verb often belong to broad semantic cate-
gories. The verb read generally involves a person as a subject and a written thing as
an object. This extension of valence to the semantic domain is called the selectional
restrictions of a verb and is exemplified by the frame structure of gave:

gave

⎡
⎣ subject : PERSON

object : THING
iobject : PERSON

⎤
⎦

Chap. 13 gives more details on this aspect.
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Table 10.8. Verb–complement structure in German.

Verb Complement structure Example
schlafen None (Intransitive) Ich habe geschlafen
bringen NP(Accusative) Der Ober hat eine Speise gebracht
bringen NP(Dative) + NP(Accusative) Der Ober hat dem Kunde eine Speise gebracht
abhängen von + NP(Dative) Es hängt vom Ober ab
warten auf + S Er wartete auf dem Ober, die Speise zu bringen
fortsetzen NP Er hat die Arbeit fortgesetzt
wissen NP(Final verb) Der Ober weiß, das der Kunde Fisch liebt

10.5.4 Dependencies and Functions

The dependency structure of a sentence – the stemma – generally reflects its tradi-
tional syntactic representation and therefore its links can be annotated with function
labels. In a simple sentence, the two main functions correspond to subject and object
relations that link noun groups to the sentence’s main verb (Fig. 10.16).

The waiter brought the meal 

subject 
object

Fig. 10.16. Dependency graph of the sentence The waiter brought the meal.

Adjuncts form another class of functions that modify the verb they are related to.
They include prepositional phrases whose head is set arbitrarily to the front prepo-
sition (Fig. 10.17). In the same way, adjuncts include adverbs that modify a verb
(Fig. 10.18).

They played the game in a different way

subject object 

adjunct of manner

Fig. 10.17. Dependency graph of the sentence They played the game in a different way. After
Järvinen and Tapanainen (1997).

As for phrase categories in constituent grammars, a fixed set of function labels
is necessary to annotate stemmas. Tables 10.9 and 10.10 reproduce the set of de-
pendency functions proposed by Järvinen and Tapanainen (1997). Figures 10.19 and
10.20 show examples of annotations.
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John Smith the president of IBM announced his resignation yesterday 

subject 

object 

adjunct of time 

Fig. 10.18. Dependency graph of the sentence John Smith, the president of IBM, announced
his resignation yesterday. After Collins (1996).

The on 

people

the 

<root>

bus 

singing

were

main

v-ch

subj

det mod

pcomp

det

Fig. 10.19. Stemma representing The people on the bus were singing. After Järvinen and
Tapanainen (1997).

best

friend

my 

<root>

was 

Anna

main

subj

mod

attr

loc
tmp

det
here night

last, ,
attr

mod
mod

Fig. 10.20. Stemma representing Anna, my best friend, was here last night. After Järvinen and
Tapanainen (1997).
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Table 10.9. Main functions used by Järvinen and Tapanainen (1997) in their functional depen-
dency parser for English. Intranuclear links combine words inside a nœud (a consituent). Verb
complementation links a verb to its core complements. Determinative functions generally con-
nect determiners to nouns. Modifiers are pre- or postmodifiers of a noun, i.e., dependents of a
noun before or after it.

Name Description Example
Main functions

main Main element, usually the verb He doesn’t know whether to send a gift
qtag Question tag Let’s play another game, shall we?

Intranuclear links
v-ch Verb chain, connects elements

in a complex verb group
It may have been being examined

pcomp Prepositional complement, con-
nects a preposition to the noun
group after it.

They played the game in a different way

phr Verb particle, connects a verb to
a particle or preposition.

He asked me who would look after the baby

Verb complementation
subj Subject
obj Object I gave him my address
comp Subject complement, the second

argument of a copula.
It has become marginal

dat Indirect object Pauline gave it to Tom
oc Object complement His friends call him Ted
copred Copredicative We took a swim naked
voc Vocative Play it again, Sam

Determinative functions
qn Quantifier I want more money
det Determiner Other members will join...
neg Negator It is not coffee that I like, but tea

Modifiers
attr Attributive nominal Knowing no French, I couldn’t express my

thanks
mod Other postmodifiers The baby, Frances Bean, was. . .

The people on the bus were singing
ad Attributive adverbial She is more popular

Junctives
cc Coordination Two or more cars. . .
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Table 10.10. Adverbial functions used by Järvinen and Tapanainen (1997). Adverbial func-
tions connect adjuncts to their verb.

Name Description Example
Adverbial functions

tmp Time It gives me very great pleasure this evening
dur Duration They stay in Italy all summer through
frq Frequency I often catch her playing
qua Quantity It weighed almost a ton
man Manner They will support him, however grudgingly. . .
loc Location I don’t know where to meet him
sou Source They travelled slowly from Hong Kong
goa Goal They moved into the kitchen every stick of furniture they

possessed
cnd Condition If I were leaving, you should know about it
meta Clause adverbial Will somebody please open the door?
cla Clause initial element In the view of the authorities, Jones was. . .

10.6 Further Reading

Literature on Chomsky’s works and generative transformational grammar is uncount-
able. Most linguistics textbooks in the English-speaking world retain this approach.
Recent accounts include Radford (1988), Ruwet (1970), Haegeman and Gueron
(1999), Lasnik et al. (2000).

Principles of dependency grammars stem from an old tradition dating back to the
ancient Greek and Latin grammar schools. Tesnière (1966) proposes a modern for-
mulation. Heringer (1993) provides a short and excellent summary of his work. Other
accounts include Hays (1964), Gaifman (1965), and Mel’cuk (1988). Implementa-
tions of dependency theories include the Functional Dependency Grammar (Järvinen
and Tapanainen 1997) and Link Grammar (Sleator and Temperley 1993).

Within the work of Tesnière, valence has been a very productive concept although
it has not always been explicitly acknowledged. It provides theoretical grounds for
verb subcategorization, cases, and selectional restrictions that we find in other parts
of this book (Chapter 13). In addition to verbs, valence can apply to adjectives and
nouns.

Unification-based grammars were born when Alain Colmerauer designed the
systèmes-Q (1970) and later the Prolog language with his colleagues. Systèmes-Q
have been applied in the MÉTÉO system to translate weather reports from English
to French (TAUM 1971). MÉTÉO is still in use today. Prolog is derived from them
and was also implemented for a project aimed at dialogue and language analysis
(Colmerauer et al. 1972). For a review of its history, see Colmerauer and Roussel
(1996).

Unification-based grammars have been used in many syntactic theories. The old-
est and probably the simplest example is that of Definite Clause Grammars (Colmer-
auer 1978; Pereira and Warren 1980). Since then there have been many followers.
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The most notable include head-driven phrase structure grammars (HPSG, Pollard
and Sag 1994) and lexical function grammars (LFG, Kaplan and Bresnan 1982).
Unification-based grammars do not depend on a specific syntactic formalism. They
are merely a tool that we used with PS rules in this chapter. Dependency grammars
can also make use of them. Dependency unification grammar (DUG, Hellwig 1980,
1986) and unification dependency grammar (UDG, Maxwell 1995) are examples.
Accounts of unification formalisms in French include Abeillé (1993) and in German,
Müller (1999).

Exercises

10.1. Describe step-by-step how the Prolog search mechanism would generate the
sentence the boy hit the ball, and compare this trace with that of Fig. 10.1.

10.2. Write a Prolog program that converts a DCG grammar into its Chomsky normal
form equivalent.

10.3. Write a grammar using the DCG notation to analyze simple sentences: a noun
phrase and a verb phrase, where the verb phrase is either a verb or a verb and an
object. Write transformation rules that map declarative sentences into their negation.

10.4. Complement PS rules of Exercise 10.3 to parse a possible prepositional phrase
within the verb phrase. Write transformation rules that carry out a topicalization of
the prepositional phrase.

10.5. Write DCG rules using the gap threading technique to handle sentences and
questions of Table 10.2.

10.6. Find a text of 10 to 20 lines in a language you know and bracket the constituents
with the phrase labels of Table 10.3.

10.7. Unify

[
gen : fem
case : acc

]
and

[
gen : fem
num : pl

]
,

⎡
⎣ gen : fem

num : pl
case : acc

⎤
⎦ and

[
gen : fem
num : sg

]
,

⎡
⎣ gen : masc

num : X
case : nom

⎤
⎦ and

⎡
⎣ gen : masc

num : pl
case : Y

⎤
⎦ when possible.

10.8. Unify

[
f1 : v1

f2 : X

]
and

⎡
⎣f1 : v5

f2 :

[
f3 : v3

f4 : v4

]⎤
⎦,

[
f1 : v1

f2 : X

]
and

⎡
⎣ f1 : Y

f2 :

[
f3 : v3

f4 : Y

]⎤
⎦,

[
f1 : v1

f2 : X

]
and

⎡
⎣f5 : X

f2 : Y
f1 : Y

⎤
⎦.
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10.9. Using the unification grammar formalism write rules describing the noun group
in a language you know.

10.10. Write a norm/2 predicate that transforms complete lists into incomplete
ones as, for example, [a, b, [c, d], e] into [a, b, [c, d | _], e,
| _].

10.11. Find a text of approximately ten lines in a language you know and draw the
stemmas (dependency links).

10.12. Draw stemmas of sentences in Table 10.9.

10.13. Annotate stemmas of sentences in Table 10.9 with their corresponding func-
tions.
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Parsing Techniques

11.1 Introduction

In the previous chapters, we used Prolog’s built-in search mechanism and the DCG
notation to parse sentences and constituents. This search mechanism has drawbacks
however. To name some of them: its depth-first strategy does not handle left-recursive
rules well and backtracking is sometimes inefficient. In addition, if DCGs are appro-
priate to describe constituents, we haven’t seen means to parse dependencies until
now.

This chapter describes algorithms and data structures to improve the efficiency
of constituents parsing and to parse dependencies. It begins with a basic bottom-
up algorithm and then introduces techniques using well-formed substring tables or
charts. Charts are arrays to store parsing results and hypotheses. They are popular
parsing devices because of some superior features: charts accept left-recursive rules,
avoid backtracking, and can work with a top-down or bottom-up control.

Frequently, sentences show an ambiguous structure – exhibit more than one
possible parse. Search strategies, either bottom-up or top-down, produce solutions
blindly; the ordering of the resulting parse trees being tied to that of the rules. For
most cases however sentences are not ambiguous to human readers who retain one
single sensible analysis. To come to a similar result, parsers require a disambiguation
mechanism.

Early disambiguation methods implemented common sense rules to assess parse
trees and to discard implausible ones. Current solutions, inspired from speech recog-
nition and part-of-speech tagging, use statistical techniques. They enable us to parse
properly most ambiguous sentences. Recent approaches based on dependencies yield
a very high rate of performance for unrestricted texts. This chapter outlines symbolic
techniques as well as probabilistic methods applicable to constituency and depen-
dency grammars.
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11.2 Bottom-up Parsing

11.2.1 The Shift–Reduce Algorithm

We saw in Chap. 8 that left-recursive rules may cause top-down parsing to loop
infinitely. Left-recursion is used to express structures such as noun phrases modified
by a prepositional phrase, or conjunctions of noun phrases as, for example,

np --> np, pp.
np --> np, conj, np.

It is possible to eliminate left-recursive rules using auxiliary symbols and rules.
However, this results in larger grammars that are less regular. In addition, parsing
with these new rules yields slightly different syntactic trees, which are often less
natural.

A common remedy to handle left-recursive rules is to run them with a bottom-
up search strategy. Instead of expanding constituents from the top node, a bottom-up
parser starts from the words. It looks up their parts of speech, builds partial structures
out of them, and goes on from partial structure to partial structure until it reaches the
top node. Figure 11.1 shows the construction order of partial structures that goes
from the annotation of the as a determiner up to the root s.

S

NP VP

Det VerbNoun

The waiter brought the meal

Det Noun

NP

Start 

Fig. 11.1. Bottom-up parsing. The parser starts with the words and builds the syntactic struc-
ture up to the top node.

The shift and reduce algorithm is probably the simplest way to implement
bottom-up parsing. As input, it uses two arguments: the list of words to parse and
a symbol, s, np, for example, representing the parsing goal. The algorithm grad-
ually reduces words, parts of speech, and phrase categories until it reaches the top
node symbol – the parsing goal. The algorithm consists of a two-step loop:

1. Shift a word from the phrase or sentence to parse onto a stack.
2. Apply a sequence of grammar rules to reduce elements of the stack.

This loop is repeated until there are no more words in the list and the stack is reduced
to the parsing goal. Table 11.1 shows an example of shift and reduce operations
applied to the sentence The waiter brought the meal.
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Table 11.1. Steps of the shift–reduce algorithm to parse the waiter brought the meal. At iter-
ation 7, a further reduction of the stack yields [s], which is the parsing goal. However, since
there are remaining words in the input list, the algorithm fails and backtracks to produce the
next states of the stack. The table does not show the exploration of paths leading to a failure.

It. Stack S/R Word list
0 [the, waiter, brought, the, meal]
1 [the] Shift [waiter, brought, the, meal]
2 [det] Reduce [waiter, brought, the, meal]
3 [det, waiter] Shift [brought, the, meal]
4 [det, noun] Reduce [brought, the, meal]
5 [np] Reduce [brought, the, meal]
6 [np, brought] Shift [the, meal]
7 [np, v] Reduce [the, meal]
8 [np, v, the] Shift [meal]
9 [np, v, det] Reduce [meal]
10 [np, v, det, meal] Shift []
11 [np, v, det, n] Reduce []
12 [np, v, np] Reduce []
13 [np, vp] Reduce []
14 [s] Reduce []

11.2.2 Implementing Shift–Reduce Parsing in Prolog

We implement both arguments of the shift_reduce/2 predicate as lists: the
words to parse and the symbol – or symbols – corresponding to the parsing goal.
We represent grammar rules and the vocabulary as facts, as shown in Table 11.2.

Table 11.2. Rules and vocabulary of a shift–reduce parser.

Rules Vocabulary
rule(s, [np, vp]). word(d, [the]). word(v, [brought]).
rule(np, [d, n]). word(n, [waiter]). word(v, [slept]).
rule(vp, [v]). word(n, [meal]).
rule(vp, [v, np]).

Using this grammar, shift_reduce should accept the following queries:

?- shift_reduce([the, waiter, brought, the, meal],
[s]).

Yes

?- shift_reduce([the, waiter, brought, the, meal],
[np, vp]).

Yes
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?- shift_reduce([the, waiter, slept], X).
X = [s];
X = [np, vp];
X = [np, v];
...

To implement this predicate, we need an auxiliary stack to hold words and cat-
egories where we carry out the reduction step. This initial value of the stack is an
empty list

% shift_reduce(+Sentence, ?Category)
shift_reduce(Sentence, Category) :-
shift_reduce(Sentence, [], Category).

Then shift_reduce/3 uses two predicates, shift/4 and reduce/2. It
repeats the reduction recursively until it no longer finds a reduction. It then applies
shift. The parsing process succeeds when the sentence is an empty list and Stack
is reduced to the parsing goal:

% shift_reduce(+Sentence, +Stack, ?Category)
shift_reduce([], Category, Category).
shift_reduce(Sentence, Stack, Category) :-
reduce(Stack, ReducedStack),
write(’Reduce: ’), write(ReducedStack), nl,
shift_reduce(Sentence, ReducedStack, Category).

shift_reduce(Sentence, Stack, Category) :-
shift(Sentence, Stack, NewSentence, NewStack),
write(’Shift: ’), write(NewStack), nl,
shift_reduce(NewSentence, NewStack, Category).

shift/4 removes the first word from the word list currently being parsed and
puts it on the top the stack – here appends it to the end of the Stack list – to produce
a NewStack.

% shift(+Sentence, +Stack, -NewSentence, -NewStack)
shift([First | Rest], Stack, Rest, NewStack) :-
append(Stack, [First], NewStack).

reduce/2 simplifies the Stack. It searches the rules that match a sequence of
symbols in the stack using match_rule/2 and match_word/2.

%reduce(+Stack, -NewStack)
reduce(Stack, NewStack) :-
match_rule(Stack, NewStack).

reduce(Stack, NewStack) :-
match_word(Stack, NewStack).
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match_rule/2 attempts to find the Expansion of a rule on the top of
Stack, and replaces it with Head to produce ReducedStack:

match_rule(Stack, ReducedStack) :-
rule(Head, Expansion),
append(StackBottom, Expansion, Stack),
append(StackBottom, [Head], ReducedStack).

match_word/2 is similar:

match_word(Stack, NewStack) :-
append(StackBottom, Word, Stack),
word(POS, Word),
append(StackBottom, [POS], NewStack).

The stack management of this program is not efficient because shift/4,
match_word/2, and match_rule/2 have to traverse it using append/3. It
is possible to avoid the traversal using a reversed stack. For an optimization, see
Exercise 11.1.

11.2.3 Differences Between Bottom-up and Top-down Parsing

Top-down and bottom-up strategies are fundamental approaches to parsing. The top-
down exploration is probably more intuitive from the viewpoint of a Prolog program-
mer, at least for a neophyte. Once a grammar is written, Prolog relies on its built-in
search mechanism to parse a sentence. On the contrary, bottom-up parsing requires
additional code and may not be as natural.

Whatever the parsing strategy, phrase-structure rule grammars are written roughly
in the same way. There are a couple of slight differences, however. As we saw,
bottom-up parsing can handle left-recursive rules such as those describing conjunc-
tions. In contrast, top-down parsers can handle null constituents like

det --> [].

Bottom-up parsers could not use such a rule with an empty symbol because they are
able to process actual words only.

Both parsing methods may fail to find a solution, but in a different way. Top-down
parsing explores all the grammar rules starting from the initial symbol, whatever
the actual tokens. It leads to the expansion of trees that have no chance to yield
any solution since they will not match the input words. On the contrary, bottom-
up parsing starts with the words and hence builds trees that conform to the input.
However, a bottom-up analysis annotates the input words with every possible part of
speech, and generates the corresponding partial trees, even if they have no chance to
result into a sentence.

For both strategies, Prolog produces a solution – whenever it exists – using back-
tracking. When Prolog has found a dead-end path, whether in the bottom-up or the
top-down mode, it selects another path and explores this path until it completes the
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parse or fails. Backtracking may repeat a same operation since Prolog does not store
intermediate or partial solutions. We will see in the next section a parsing technique
that stores incomplete solutions using a table or a chart and thus avoids parsing
repetitions.

11.3 Chart Parsing

11.3.1 Backtracking and Efficiency

Backtracking is an elegant and simple mechanism, but it frequently leads to reparsing
a same substructure to produce the final result. Consider the noun phrase The meal
of the day and DCG rules in Fig. 11.2 to parse it.

np --> npx. npx --> det, noun.
np --> npx, pp.

pp --> prep, np.

Fig. 11.2. A small set of DCG rules where left-recursion has been eliminated.

The DCG search algorithm first tries rule np --> npx, uses npx to parse The
meal, and fails because of the remaining words of the day. It then backtracks with the
second np rule, reuses npx to reparse The meal, and finally completes the analysis
with pp. Backtracking is clearly inefficient here. The parser twice applies the same
rule to the same group of words because it has forgotten a previous result: The meal
is an npx.

Chart – or tabular – parsing is a technique to avoid a parser repeating a same
analysis. A chart is a memory where the parser stores all the possible partial results
at a given position in the sentence. When it needs to process a subsequent word, the
parser fetches partial parse structures obtained so far in the chart instead of repars-
ing them. At the end of the analysis, the chart contains all possible parse trees and
subtrees that it represents tidily and efficiently.

11.3.2 Structure of a Chart

A chart represents intervals between words as nodes of a graph. Considering a sen-
tence of N words, nodes are numbered from left to right, from 0 to N . The chart –
which can also be viewed as a table – then has N +1 entries or positions. Figure 11.3
shows word numbering of the sentence Bring the meal and the noun phrase The meal
of the day. A chart node is also called a vertex.

Directed arcs (or edges) connect nodes and define constituents. Each arc has a la-
bel that corresponds to the syntactic category of the group it spans (Fig. 11.4). Charts
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0 1 2Bring the meal 3

0 1 2The meal of 3 4 5the day

Fig. 11.3. Nodes of a chart.

0 1 2Bring the meal 3

detv

s

vp

noun

np

Fig. 11.4. Nodes and arcs of a chart associated with the sentence Bring the meal.

consist then of sets of nodes and directed labeled arcs. This algorithmic structure is
also called a directed acyclic graph (DAG).

A chart can store alternative syntactic representations. As we saw in Chap. 8, the
grammar in Fig. 11.5 yields two parse trees for the sentence

Bring the meal of the day.

s --> vp. np --> det, noun.
vp --> v, np, pp. np --> det, adj, noun.
vp --> v, np. np --> np, pp.

pp --> prep, np.

Fig. 11.5. A small grammar for restaurant orders in English.

The chart of Fig. 11.6 shows the possible parses of this sentence. Rules vp -->
v, np and vp --> v, np, pp create two paths that connect node 0 to node 6.
Starting from node 0, the first one traverses nodes 1 and 6: arc v from 0 to 1, then
np from 1 to 6. The second sequence of arcs traverses nodes 1, 3, 6: arc v from 0 to
1, then np from 1 to 3, and finally pp from 3 to 6.

11.3.3 The Active Chart

So far, we used charts as devices to represent partial or complete parse trees. Charts
can also store representations of constituents currently being parsed. In this case, a
chart is said to be active.
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0 1 2Bring the meal 3

det
v

vp

noun

np

4 5 6of the day

noun
detprep

pp

np

np

s

Fig. 11.6. A chart representing alternative parse trees.

In the classical chart notation, the parsing progress of a constituent is indicated
using a dot (•) inserted in the right-hand side of the rules. A dotted rule represents
what has been parsed so far, with the dot marking the position of the parser relative
to the input. Thus

np --> det noun •
is a completely parsed noun phrase composed of a determiner and a noun. Since the
constituent is complete, the arc is said to be inactive. Rules

np --> det • noun
np --> • det noun

describe noun phrases being parsed. Both correspond to constituent hypotheses that
the parser tries to find. In the first rule, the parser has found a determiner and looks
for a noun to complete the parse. The second rule represents the constituent being
sought originally. Both arcs are said to be active since the parser needs more words
from the input to confirm them.

Consider the sentence Bring the meal. Table 11.3 shows dotted-rules and arcs
during the parsing process, and Fig. 11.7 shows a graphic representation of them.

Table 11.3. Some dotted-rules and arcs in the chart while parsing Bring the meal of the day.

Positions Rules Arcs Constituents
0 s --> • vp [0, 0] • Bring the meal
1 vp --> v • np [0, 1] Bring • the meal
1 np --> • det noun [1, 1] • the meal
1 np --> • np pp [1, 1] • the meal
2 np --> det • noun [1, 2] the • meal
3 np --> det noun • [1, 3] the meal •
3 np --> np • pp [1, 3] the meal •
3 vp --> v np • [0, 3] Bring the meal •
3 s --> vp • [0, 3] Bring the meal •
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0 1 2Bring the meal 3

np --> det noun •

np --> det • noun

np --> np • pp

v --> bring • det --> the • noun --> meal •

vp --> v • np

vp --> v np •

s --> vp •

np --> • det noun

np --> • np pps --> • vp

Fig. 11.7. Some arcs of a chart labeled with dotted-rules while parsing Bring the meal of the
day.

Charts can be used with top-down, bottom-up, or more sophisticated strategies.
We introduce now a top-down version due to Earley (1970). Its popularity comes
from its complexity, which has been demonstrated as 0(N3).

11.3.4 Modules of an Earley Parser

An Earley parser consists of three modules, the predictor, the scanner, and the com-
pleter, which are chained by the parsing process. The initial goal of the algorithm
is to parse the start symbol, which is generally a sentence s. Here, we illustrate the
algorithm with the noun phrase The meal of the day and the rules in Fig. 11.5. The
start symbol is then np and is represented by the dotted-rule

start --> • np

The Predictor. At a given position of the parsing process, the predictor deter-
mines all possible further parses. To carry this out, the predictor selects all the rules
that can process active arcs. Considering the dotted rule, lhs --> c1 c2 ... •
c... cn, the predictor searches all the rules where c is the left-hand-side symbol:
c --> x1 ... xk. The predictor introduces them into the chart as new parsing
goals under the form c --> • x1 ... xk. The predictor proceeds recursively
with nonterminal symbols until it reaches the parts of speech. Considering The meal
of the day with np as the starting parsing goal and applying the predictor results in
new goals shown in Fig. 11.8 and graphically in Fig. 11.9.

The Scanner. Once all possible predictions are done, the scanner accepts a new
word from the input, here the. The parts of speech to the right of a dot are matched
against the word, here in our example, rules np --> • det noun and np -->
• det adj noun. The scanner inserts the word into the chart with all its matching
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start --> • np [0, 0]
np --> • det noun [0, 0]
np --> • det adj noun [0, 0]
np --> • np pp [0, 0]

Fig. 11.8. Dotted-rules resulting from the recursive run of the predictor with starting goal np.

0 The meal of the day

np --> • det adj noun 

np --> • np pp 

np --> • det noun 

start --> • np 

1 2 3 4 5

Fig. 11.9. Graphic representation of the predictor results.

part-of-speech readings under the form pos --> word • and advances the parse
position to the next node, here

det --> the • [0, 1]

as shown in Fig. 11.10.

0 The meal of the day

det --> the • 

np --> • det adj noun 

np --> • np pp 

np --> • det noun 

start --> • np 

1 2 3 4 5

Fig. 11.10. The scanner accepts word The from the input.

The Completer. The scanner introduces new constituents under the form of parts
of speech in the chart. The completer uses them to advance the dot of active arcs
expecting them, and possibly complete the corresponding constituents. Once a con-
stituent has been completed, it can in turn modify others expecting it in active arcs.
The completer thus is applied to propagate modifications and to complete all possible
arcs. It first determines which constituents are complete by looking for dots that have
reached the end of a rule: c --> x1 ... xk •. The completer then searches all
the active arcs expecting c, that is, the rules with a dot to the right of it: lhs -->
c1 c2 ... • c ... cn, moves the dot over c: lhs --> c1 c2 ... c •



11.3 Chart Parsing 287

... cn, and inserts the new arc into the chart. It proceeds recursively from the parts
of speech to all the possible higher-level constituents.

In our example, the only completed constituent is the part of speech det. The
completer advances the dot over it in two active arcs and inserts them into the chart.
It does not produce new completed constituents (Fig. 11.11).

np --> det • noun [0, 1]
np --> det • adj noun [0, 1]

0 The meal of the day

det --> the • 

np --> • det adj noun 

np --> det • noun 

np --> • np pp 

np --> • det noun 

start --> • np 

1 2 3 4 5

np --> det • adj noun 

Fig. 11.11. The completer looks for completed constituents and advances the dot over them.

From node 1, the predictor is run again, but it does not yield new arcs. The scan-
ner accepts word meal, advances the position to 2, and inserts

noun --> meal • [1, 2]

as shown in Fig. 11.12.

0 The meal of the day

det --> the • noun --> meal • 

np --> • det adj noun 

np --> det • noun 

np --> • np pp 

np --> • det noun 

start --> • np 

1 2 3 4 5

np --> det • adj noun 

Fig. 11.12. Predictor and scanner are run with word meal.

At node 2, the completer can advance active arc
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np --> det noun • [0, 2]

and complete a higher-level constituent (Fig. 11.13).

np --> np • pp [0, 2]

0 The meal of the day

det --> the • noun --> meal • 

np --> • det adj noun 

np --> det • noun 

np --> • np pp 

np --> • det noun 

start --> • np 

1 2 3 4 5

np --> det • adj noun 

np --> det noun • 

np --> np • pp 

Fig. 11.13. The completer is run to produce new chart entries.

11.3.5 The Earley Algorithm in Prolog

To implement the algorithm in Prolog, we must first represent the chart. It consists
of arcs such as

np --> np • pp [0, 2]

which we represent as facts

arc(np, [np, ’.’, pp], 0, 2).

The start symbol is encoded as:

arc(start, [’.’, np], 0, 0).

Although this data representation is straightforward from the description of
dotted-rules, it is not efficient from the speed viewpoint. The arc representation can
be improved easily, but an optimization may compromise clarity. We leave it as an
exercise.

New arcs are stored in the chart, a list called Chart, using the expand_-
chart/1 predicate, which checks first that the new entry is not already in the chart:
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expand_chart([], Chart, Chart).
expand_chart([Entry | Entries], Chart, NewChart) :-
\+ member(Entry, Chart),
!,
expand_chart(Entries, [Entry | Chart], NewChart).

expand_chart([_ | Entries], Chart, NewChart) :-
expand_chart(Entries, Chart, NewChart).

The Earley algorithm is implemented by the predicate earley_parser/2. It
uses five arguments: the input word sequence, the current position in the sequence
CurPos, the final position FinalPos, the current chart, and the final chart. The
earley_parser main rule consists of calling the predictor, scanner, and
completer predicates through the N + 1 nodes of the chart:

earley_parser([], FinalPos, FinalPos, Chart, Chart):-
!.

earley_parser(Words, CurPos, FinalPos, Chart,
FinalChart) :-

predictor(CurPos, Chart, PredChart),
NextPos is CurPos + 1,
scanner(Words, RestWords, CurPos, NextPos,

PredChart, ScanChart),
completer(NextPos, ScanChart, NewChart),
!,
earley_parser(RestWords, NextPos, FinalPos,

NewChart, FinalChart).

The Earley algorithm is called by parse/2, which takes the word sequence
Words and the start Category as arguments. The parse/2 predicate initializes
the chart with the start symbol and launches the parse. The parsing success corre-
sponds to the presence of a completed start symbol, which is, in our example, the
arc(start, [np, ’.’], 0, FinalNode) fact in the Prolog database:

parse(Words, Category, FinalChart) :-
expand_chart([arc(start, [’.’, Category], 0, 0)],

[], Chart),
earley_parser(Words, 0, FinalPos, Chart,

FinalChart),
member(arc(start, [Category, ’.’], 0, FinalPos),

FinalChart).

Table 11.4 shows the transcription of np rules in Fig. 11.5 encoded as Prolog
facts. It contains a small vocabulary to parse the phrase The meal of the day.

The Predictor. The predictor looks for rules to expand arcs from a current posi-
tion (CurPos). To carry this out, predictor/3 searches all the arcs contain-
ing the pattern: [..., X, ’.’, CAT, ...], where CAT matches the left-
hand side of a rule: rule(CAT, RHS). This is compactly expressed using the
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Table 11.4. Rules and vocabulary for the chart parser.

Rules Words
rule(np, [d, n]). word(d, [the]). word(prep, [of]).
rule(np, [d, a, n]). word(n, [waiter]). word(v, [brought]).
rule(np, [np, pp]). word(n, [meal]). word(v, [slept]).
rule(pp, [prep, np]). word(n, [day]).

findall/3 built-in predicate. predictor/3 then adds arc(CAT, [’.’ |
RHS], CurPos, CurPos) to the chart NewChart. predictor/3 is run re-
cursively until no new arc can be produced, that is, NewChartEntries == [].
It then returns the predictor’s chart PredChart.

predictor(CurPos, Chart, PredChart) :-
findall(

arc(CAT, [’.’ | RHS], CurPos, CurPos),
(
member(arc(LHS, ACTIVE_RHS, InitPos, CurPos),

Chart),
append(B, [’.’, CAT | E], ACTIVE_RHS),
rule(CAT, RHS),
\+ member(arc(CAT, [’.’ | RHS], CurPos,CurPos),

Chart)
),
NewChartEntries),

NewChartEntries \== [],
expand_chart(NewChartEntries, Chart, NewChart),
predictor(CurPos, NewChart, PredChart),
!.

predictor(_, PredChart, PredChart).

Using chart entry arc(np, [np, ’.’, pp], 0, 2) and rules in Ta-
ble 11.4:

?- predictor(2,[arc(np, [np, ’.’, pp], 0, 2)],Chart).

adds

arc(pp, [’.’, prep, np], 2, 2)

to the Chart list.

The Scanner. The scanner gets a new word from the input and looks for active
arcs that match its possible parts of speech to the right of the dot. The scanner stores
the word with its compatible parts of speech as new chart entries. Again, we use
findall/3 to implement this search.
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scanner([Word | Rest], Rest, CurPos, NextPos, Chart,
NewChart) :-

findall(
arc(CAT, [Word, ’.’], CurPos, NextPos),
(
word(CAT, [Word]),
once((

member(arc(LHS, ACTIVE_RHS, InitPos, CurPos),
Chart),

append(B, [’.’, CAT | E], ACTIVE_RHS)))
),
NewChartEntries),

NewChartEntries \== [],
expand_chart(NewChartEntries, Chart, NewChart).

The Completer. The completer looks for completed constituents, that is, for arcs
with a dot at the end of the right-hand-side part of the rule. They correspond
to arc(LHS, COMPLETE_RHS, InitPos, CurPos), where COMPLETE_-
RHS matches [..., X, ’.’]. We use the goal append(_, [’.’], COM-
PLETE_RHS) to find them. The completer then searches arcs with a dot to the
right of the LHS category of completed constituents: [..., ’.’, LHS, ...],
advances the dot over LHS: [..., LHS, ’.’, ...], and stores the new arc
with updated node positions. We use findall/3 to implement the search, and
completer/3 is run recursively until there is no arc to complete.

completer(CurPos, Chart, CompChart) :-
findall(

arc(LHS2, RHS3, PrevPos, CurPos),
(
member(arc(LHS, COMPLETE_RHS, InitPos, CurPos),

Chart),
append(_, [’.’], COMPLETE_RHS),
member(arc(LHS2, RHS2,PrevPos,InitPos), Chart),
append(B, [’.’, LHS | E], RHS2),
append(B, [LHS, ’.’ | E], RHS3),
\+ member(arc(LHS2, RHS3, PrevPos, CurPos),

Chart)
),
CompletedChartEntries),

CompletedChartEntries \== [],
expand_chart(CompletedChartEntries,Chart,NewChart),
completer(CurPos, NewChart, CompChart),
!.

completer(_, CompChart, CompChart).
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An Execution Example. Table 11.5 shows the arcs added to the chart while pars-
ing the phrase The meal of the day. The parser is queried by:

?- parse([the, meal, of, the, day], np, Chart).

Note that the completer calls at position 2 that completes np, and at position
5 that completes np, pp, and the starting goal np.

Table 11.5. Additions to the Prolog database.

Module New Chart Entries in the Database
Position 0

start arc(start, [’.’, np], 0, 0)
predictor arc(np, [., d, n], 0, 0), arc(np, [., d, a, n], 0,

0), arc(np, [., np, pp], 0, 0)
Position 1

scanner arc(d, [the, .], 0, 1)
completer arc(np, [d, ., a, n], 0, 1), arc(np, [d, ., n], 0,

1)
predictor []

Position 2
scanner arc(n, [meal, .], 1, 2)
completer arc(np, [d, n, .], 0, 2)
completer arc(np, [np, ., pp], 0, 2), arc(start, [np, .], 0,

2)
predictor arc(pp, [., prep, np], 2, 2)

Position 3
scanner arc(prep, [of, .], 2, 3)
completer arc(pp, [prep, ., np], 2, 3)
predictor arc(np, [., d, n], 3, 3), arc(np, [., d, a, n], 3,

3), arc(np, [., np, pp], 3, 3)
Position 4

scanner arc(d, [the, .], 3, 4)
completer arc(np, [d, ., a, n], 3, 4), arc(np, [d, ., n], 3,

4)
predictor []

Position 5
scanner arc(n, [day, .], 4, 5)
completer arc(np, [d, n, .], 3, 5)
completer arc(np, [np, ., pp], 3, 5), arc(pp, [prep, np, .],

2, 5)
completer arc(np, [np, pp, .], 0, 5)
completer arc(np, [np, ., pp], 0, 5), arc(start, [np, .], 0,

5)
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11.3.6 The Earley Parser to Handle Left-Recursive Rules and Empty Symbols

The Earley parser handles left-recursive rules without looping infinitely. In effect, the
predictor is the only place where the parser could be trapped into an infinite execu-
tion. This is avoided because before creating a new arc, the predictor predicate
checks that it is not already present in the chart using the goal

\+ member(arc(CAT, [’.’ | RHS], CrPos, CrPos), Chart)

So

start --> • np [0, 0]

predicts

np --> • np pp [0, 0]
np --> • det noun [0, 0]
np --> • det adj noun [0, 0]

but np --> • np pp predicts nothing more since all the possible arcs are already
in the chart.

The Earley algorithm can also parse null constituents. It corresponds to examples
such as meals of the day, where the determiner is encoded as word(d, []). As
we wrote it, the scanner would fail on empty symbols. We need to add a second rule
to it to handle empty lists:

% The first scanner rule
scanner([Word | Rest], Rest, CurPos, NextPos, Chart,

NewChart) :-
findall(

arc(CAT, [Word, ’.’], CurPos, NextPos),
(
word(CAT, [Word]),
once((

member(arc(LHS, ACTIVE_RHS, InitPos, CurPos),
Chart),

append(B, [’.’, CAT | E], ACTIVE_RHS)))
),
NewChartEntries),

NewChartEntries \== [],
expand_chart(NewChartEntries, Chart, NewChart),
!.

% The second rule to handle empty symbols
scanner(Words, Words, CurPos, NextPos, Chart,

NewChart) :-
findall(

arc(CAT, [[], ’.’], CurPos, NextPos),
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(
word(CAT, []),
once((

member(arc(LHS, ACTIVE_RHS, InitPos, CurPos),
Chart),

append(B, [’.’, CAT | E], ACTIVE_RHS)))
),
NewChartEntries),

NewChartEntries \== [],
expand_chart(NewChartEntries, Chart, NewChart),
!.

Let us add

word(d, []).
word(n, [meals]).

to the database to be able to parse meals of the day:

?- parse([meals, of , the, day], np, Chart).

11.4 Probabilistic Parsing of Context-Free Grammars

So far, parsing methods made no distinction between possible parse trees of an am-
biguous sentence. They produced trees either through a systematic backtracking or
simultaneously in a chart with the Earley algorithm. The reason is that the parsers
considered all rules to be equal and tried them sequentially.

We know this is not the case in reality. Some rules describe very frequent struc-
tures, while others are rare. As a solution, a parser could try more frequent rules
first, prefer certain rules when certain words occur, and rank trees in an order of
likelihood. To do that, the parser can integrate statistics derived from bracketed cor-
pora. Because annotation is done by hand, frequencies captured by statistics reflect
preferences of human beings.

There are many possible probabilistic parsing techniques. They all aim at find-
ing an optimal analysis considering a set of statistical parameters. A major difference
between them corresponds to the introduction of lexical statistics or not – statistics
on words as opposed to statistics on rules. We begin here with a description of non-
lexicalized probabilistic context-free grammars, or PCFG.

11.5 A Description of PCFGs

A PCFG is a constituent context-free grammar where each rule describing the struc-
ture of a left-hand-side symbol is augmented with its probability P (lhs → rhs)
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Table 11.6. A small set of phrase-structure rules augmented with probabilities, P .

Rules P Rules P

s --> np vp 0.8 det --> the 1.0
s --> vp 0.2 noun --> waiter 0.4
np --> det noun 0.3 noun --> meal 0.3
np --> det adj noun 0.2 noun --> day 0.3
np --> pronoun 0.3 verb --> bring 0.4
np --> np pp 0.2 verb --> slept 0.2
vp --> v np 0.6 verb --> brought 0.4
vp --> v np pp 0.1 pronoun --> he 1.0
vp --> v pp 0.2 prep --> of 0.6
vp --> v 0.1 prep --> to 0.4
pp --> prep np 1.0 pronoun --> he 1.0

adj --> big 1.0

(Charniak 1993). Table 11.6 shows a small set of grammar rules with imaginary
probabilities.

According to figures in the table, the structure of a sentence consists 4 times out
of 5 in a noun phrase and a verb phrase – P (s → np, vp) = 0.8 – and 1 time out of 5
in a verb phrase – P (s → vp) = 0.2. Such figures correspond in fact to conditional
probabilities: knowing the left-hand-side symbol they describe proportions among
the right-hand-side expansions. The probability could be rewritten then as

P (lhs → rhs|lhs).

The sum of probabilities of all possible expansions of a left-hand-side symbol
must be equal to 1.0.

Probabilities in Table 11.6 are fictitious and incomplete. A sentence has, of
course, many more possible structures than those shown here. Real probabilities are
obtained from syntactically bracketed corpora – treebanks. The probability of a given
rule lhs → rhsi is obtained by counting the number of times it occurs in the corpus
and by dividing it by the count of all the expansions of symbol lhs.

P (lhs → rhsi|lhs) =
Count(lhs → rhsi)∑

j

Count(lhs → rhsj)
.

Parsing with a PCFG is just the same as with a context-free grammar except
that each tree is assigned with a probability. The probability for sentence S to have
the parse tree T is defined as the product of probabilities attached to rules used to
produce the tree:

P (T, S) =
∏

rule(i)producingT

P (rule(i)).

Let us exemplify probabilistic parsing for an ambiguous sentence using the gram-
mar in Table 11.6. Bring the meal of the day has two possible parse trees, as shown
in Table 11.7. We consider trees up to the verb phrase symbol only.
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Table 11.7. Possible parse trees for Bring the meal of the day.

Parse trees
T1: vp(verb(bring),

np(np(det(the), noun(meal)),
pp(prep(of), np(det(the), noun(day)))))

T2: vp(verb(bring),
np(np(det(the), noun(meal))),
pp(prep(of), np(det(the), noun(day))))

The probability of T1 is defined as (Fig. 11.14):

P (T1, Bring the meal of the day) =
P (vp → v, np) × P (v → Bring) × P (np → np, pp)×
P (np → det, noun) × P (det → the) × P (noun → meal)×
P (pp → prep, np) × P (prep → of) × P (np → det, noun)×
P (det → the) × P (noun → day) =
0.6 × 0.4 × 0.2 × 0.3 × 1.0 × 0.3 × 1.0 × 0.6 × 0.3 × 1.0 × 0.3 = 0.00023328,

and that of T2 as (Fig. 11.15) as:

P (T2, Bring the meal of the day) =
P (vp → v, np, pp) × P (v → Bring) × P (np → det, noun)×
P (det → the) × P (noun → meal)× P (pp → prep, np) × P (prep → of)×
P (np → det, noun) × P (det → the) × P (noun → day) =
0.1 × 0.4 × 0.3 × 1.0 × 0.3 × 1.0 × 0.6 × 0.3 × 1.0 × 0.3 = 0.0001944.

V P 0.00023328

V erb 0.4 NP 0.000972

NP 0.09 PP 0.054

Det 1.0 Noun 0.3 Prep 0.6 NP 0.09

Det 1.0 Noun 0.3

Bring the meal of the day

Fig. 11.14. Parse tree T1 with nodes annotated with probabilities.

T1 has a probability higher than that of T2 and then corresponds to the most likely
parse tree. Thus PCFG would properly disambiguate among alternative structures for
this sentence. However, we can notice that PCFGs are certainly not flawless because
they would not properly rank trees of Bring the meal to the table.
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V P 0.0001944

V erb 0.4 NP 0.09 PP 0.054

Det 1.0 Noun 0.3 Prep 0.6 NP 0.09

Det 1.0 Noun 0.3

Bring the meal of the day

Fig. 11.15. Parse tree T2 with nodes annotated with probabilities.

11.5.1 The Bottom-up Chart

Figures 11.14 and 11.15 show a calculation of parse tree probabilities using a bottom-
up approach. Although it is possible to use other types of parsers, this strategy seems
the most natural because it computes probabilities as it assembles partial parses.
In addition, a chart would save us many recalculations. We will combine these
techniques to build a probabilistic context-free parser. We introduce them in two
steps. First, we present a symbolic bottom-up chart parser also known as the Cocke–
Younger–Kasami (CYK) algorithm (Kasami 1965). We then extend it to probabilistic
parsing in a next section.

The CYK algorithm uses grammars in Chomsky normal form (CNF, Chap. 10)
where rules are restricted to two forms:

lhs --> rhs1, rhs2.
lhs --> [terminal_symbol].

However, the CYK algorithm can be generalized to any type of grammar (Graham et
al. 1980).

Let N be the length of the sentence. The idea of the CYK parser is to consider
constituents of increasing length from the words – length 1 – up to the sentence
– length N . In contrast to the Earley parser, the CYK algorithm stores completely
parsed constituents in the chart. It proceeds in two steps. The first step annotates the
words with all their possible parts of speech. Figure 11.16 shows the result of this
step with the sentence Bring the meal of the day. It results in chart entries such as
arc(v, [bring, ’.’], 0, 1), arc(det, [the, ’.’], 1, 2), etc.
This first step is also called the base case.

The second step considers contiguous pairs of chart entries that it tries to re-
duce in a constituent of length l, l ranging from 2 to N . Considering rule lhs -->
rhs1, rhs2, the parser searches couples of arcs corresponding to arc(rhs1,
[..., ’.’], i, k) and arc(rhs2, [..., ’.’], k, j) such that i <
k < j and j− i = l. It adds then a new arc: arc(lhs, [rhs1, rhs2, ’.’],
i, j) to the chart. Since constituents of length 2, 3, 4, . . . N are built in that or-
der, it ensures that all constituents of length less than l have already been built. This
second step is called the recursive case.
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length
1 verb det noun prep det noun

Bring the meal of the day
0 1 2 3 4 5 6

Fig. 11.16. Annotation of the words with their possible part of speech. Here words are not
ambiguous.

Let us consider constituents of length 2 of our example. We can add two noun
phrases that we insert in the second row, as shown in Fig. 11.17. They span nodes
1–3 and 4–6. Since their length is 2, no constituent can start in cell 5–6, otherwise it
would overflow the array. We insert the symbol “—” in the corresponding cell. This
property is general for any constituent of length l and yields a triangular array.

length
2 np np —
1 verb det noun prep det noun

Bring the meal of the day
0 1 2 3 4 5 6

Fig. 11.17. Constituents of length 1 and 2.

The parse is complete and successful when length N , here 6, has been reached
with the start symbol. Figure 11.18 shows constituents of length 3, and Fig. 11.19
shows the completed parse, where constituents are indexed vertically according to
their length.

length
3 s pp — —
2 np np —
1 verb det noun prep det noun

Bring the meal of the day
0 1 2 3 4 5 6

Fig. 11.18. Constituent of lengths 1, 2, and 3.

11.5.2 The Cocke–Younger–Kasami Algorithm in Prolog

From the algorithm description, the Prolog implementation is relatively straight-
forward. We use two predicates to carry out the base case and the recursive case:
tag_words/5 and cyk_loop/4.

Since we use a CNF, we need to rewrite some rules in Table 11.6:
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length
6 s — — — — —
5 np — — — —
4 — — — —
3 s pp — —
2 np np —
1 verb det noun prep det noun

Bring the meal of the day
0 1 2 3 4 5 6

Fig. 11.19. The completed parse.

• rule(np, [d, a, n]) is rewritten into rule(np, [det, np]) and
rule(np, [a, n]).

• rule(vp, [v, np, pp]) is rewritten into rule(vp, [vp, pp]) and
rule(vp, [v, np]).

• rule(s, [vp]) is rewritten into rule(s, [vp, pp]) and rule(s,
[v, np]).

• rule(vp, [v]) is rewritten into word(vp, [brought]), word(vp,
[bring]), and word(vp, [slept]).

• rule(np, [pronoun]) is rewritten into word(np, [he]).

The parsing predicate parse/2 consists of tagging the words (the base case)
and calling the reduction loop (the recursive case).

parse(Sentence, Chart) :-
tag_words(Sentence, 0, FinalPosition,[],WordChart),
cyk_loop(2, FinalPosition, WordChart, Chart).

tag_words/3 tags the words with their possible parts of speech and adds the
corresponding arcs using the expand_chart/1 predicate.

tag_words([], FinalPos, FinalPos, Chart, Chart).
tag_words([Word | Rest], Pos, FinalPos, Chart,

WordChart) :-
NextPos is Pos + 1,
findall(

arc(LHS, [Word, ’.’], Pos, NextPos),
word(LHS, [Word]),
ChartEntries),

expand_chart(ChartEntries, Chart, NewChart),
tag_words(Rest, NextPos, FinalPos, NewChart,

WordChart).
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cyk_loop/4 implements the recursive case. It proceeds from length 2 to the
sentence length and attempts to reduce constituents using inner_loop/5. The
new constituents are added to the chart using expand_chart/3.

cyk_loop(FinalPos, FinalPos, Chart, FinalChart) :-
inner_loop(0, FinalPos, FinalPos,Chart,FinalChart).

cyk_loop(Length, FinalPos, Chart, FinalChart) :-
inner_loop(0, Length, FinalPos, Chart, ILChart),
NextLength is Length + 1,
cyk_loop(NextLength, FinalPos, ILChart,FinalChart).

inner_loop(StartPos, Length, FinalPos, Chart,Chart):-
FinalPos < StartPos + Length.

inner_loop(StartPos, Length, FinalPos, Chart,
ILChart) :-

EndPos is StartPos + Length,
findall(

arc(LHS3, [LHS1, LHS2, ’.’], StartPos, EndPos),
(
member(arc(LHS1, RHS1,StartPos,MidPos), Chart),
member(arc(LHS2, RHS2, MidPos, EndPos), Chart),
StartPos < MidPos,
MidPos < EndPos,
rule(LHS3, [LHS1, LHS2])

),
ChartEntries),

expand_chart(ChartEntries, Chart, NewChart),
NextStartPos is StartPos + 1,
inner_loop(NextStartPos, Length, FinalPos,

NewChart, ILChart).

11.5.3 Adding Probabilities to the CYK Parser

Considering sentence S, the parser has to find the most likely tree T defined as the
maximum probability

T (S) = argmaxP (T ).

Let us suppose that sentence S consists of constituents A and B: S → A, B. The
most likely parse tree corresponds to that yielding the maximum probability of both
A and B. This is valid recursively for substructures of A and B down to the words.

To obtain most likely constituents for any given length, we need to maintain an
array that stores the maximum probability for all the possible constituents spanning
all the word intervals i...j in the chart. In other words, that means that if there are two
or more competing constituents with the same left-hand-side label spanning i...j, the
parser retains the maximum and discards the others. Let lhs be the constituent label
and π(i, j, lhs) this probability.
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The base case initializes the algorithm with part of speech probabilities:

π(i, i + 1, part_of_speech → word).

The recursive case maintains the probability of the most likely structure of lhs.
It corresponds to

π(i, j, lhs) = max(π(i, k, rhs1) × π(k, j, rhs2) × P (lhs → rhs1, rhs2),

where the maximum is taken over all the possible values of k with i < k < j and all
possible values of rhs1, rhs2 with lhs → rhs1, rhs2 in the grammar.

11.6 Parser Evaluation

11.6.1 Constituency-Based Evaluation

We have a variety of techniques to evaluate parsers. The PARSEVAL measures
(Black et al. 1991) are the most frequently cited for constituent parsing. They take a
manually bracketed treebank as the reference – the gold standard – and compare it
to the results of a parser.

PARSEVAL uses a metric similar to that of information extraction, that is, recall
and precision. Recall is defined as the number of correct constituents generated by
the parser, i.e., exactly similar to that of the manually bracketed tree, divided by
the number of constituents of the treebank. The precision is the number of correct
constituents generated by the parser divided by the total number of constituents –
wrong and correct ones – generated by the parser.

Recall =
Number of correct constituents generated by the parser

Number of constituents in the manually bracketed corpus
.

Precision =
Number of correct constituents generated by the parser
Total number of constituents generated by the parser

.

A third metric is the number of crossing brackets. It corresponds to the num-
ber of constituents produced by the parser that overlap constituents in the treebank.
Table 11.8 shows two possible analyses of Bring the meal of the day with crossing
brackets between both structures. The number of crossing brackets gives an idea of
the compatibility between structures and whether they can be combined into a single
structure.

Table 11.8. Bracketing of order Bring the meal of the day and crossing brackets.

Bracketing Crossing brackets
(((bring) (the meal)) (of the day)) ( ) ( )
((bring) ((the meal) (of the day))) ( ) ( )
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11.6.2 Dependency-Based Evaluation

Lin (1995) proposed another evaluation metric based on dependency trees. It also
considers a treebank that it compares to the output of a parser. The error count is
the number of words that are assigned a wrong head (governor). Figure 11.20 shows
a reference dependency tree and a possible parse of Bring the meal to the table.
The error count is 1 out of 6 links and corresponds to the wrong attachment of to.
Lin (1995) also described a method to adapt this error count to constituent structures.
This error count is probably simpler and more intuitive than the PARSEVAL metrics.

Bring

meal

the

to

table

the

Bring

meal

the to

table

the

Fig. 11.20. Evaluation of dependency trees: The reference dependency tree (left) and a possi-
ble parse output (right).

11.6.3 Performance of PCFG Parsing

PCFGs rank the possible analyses. This enables us to select the most probable parse
tree and to evaluate it. Charniak (1997) reports approximately 70% recall and 75%
precision for this parsing method.

In terms of accuracy, PCFG parsing does not show the best performances.
This is mainly due to its poor use of lexical properties. An example is given with
prepositional-phrase attachment. While prepositional phrases attach to the preceding
noun phrase 6 to 7 times out of 10 on average, there are specific lexical preferences.
Some prepositions attach more often to verbs in general, while others attach to nouns.
There are also verb/preposition or noun/preposition couples, showing strong affini-
ties.

Let us exhibit them with orders

Bring the meal to the table

and
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Bring the meal of the day

for which a parser has to decide where to attach prepositional phrases to the table
and of the day. Alternatives are the verb Bring and the noun phrase the meal. Preposi-
tional phrases headed by of attach systematically to the preceding noun phrase, here
the meal, while to attaches here to the verb. Provided that part-of-speech annotation
of both sentences is the same, the ratio

P (T1|Bring the meal of the day )

P (T2|Bring the meal of the day )
=

P (T1|Bring the meal to the table )

P (T2|Bring the meal to the table )
,

= P (vp→v,np)×P (np→np,pp)
P (vp→v,np,pp)

depends only on rule probabilities and not on the lexicon. In our example, the PCFG
does not take the preposition value into account: any prepositional phrase would
always attach to the preceding noun, thus accepting an average error rate of 30 to
40%

11.7 Parsing Dependencies

Parsing dependencies consists of finding links between governors – or heads – and
dependents – one word being the root of the sentence (Fig. 11.21). In addition, each
link can be annotated with a grammatical function as shown in Table 11.9.

Bring

the

meal

to

the

table

meal

Which sentence root?

Which governor? 

Fig. 11.21. Possible sentence roots and governors for word meal. There are N possible roots
and each remaining word has theoretically N − 1 possible governors.

The dependency graph of a sentence is compactly expressed by the sequence

D = {< Head(1), Rel(1) >, < Head(2), Rel(2) >, ..., < Head(n), Rel(n) >} ,

which maps each word of index i to its head, Head(i), with relation Rel(i). The head
is defined by its position index in the sentence. The sentence Bring the meal to the
table would yield
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Table 11.9. A representation of dependencies due to Lin (1995). Direction gives the direction
of the governor. Symbol ‘>’ means that it is the first occurrence of the word to the right, ‘>>’
the second one, etc. ‘*’ denotes the root of the sentence.

Word Word Direction Governor Governor Function
position position
1 Bring * Root Main verb
2 the > meal 3 Determiner
3 meal < Bring 1 Object
4 to < Bring 1 Location
5 the > table 6 Determiner
6 table < to 4 Prepositional complement

D = {< nil, root >, < 3, det >, < 1, object >, < 1, loc >, < 6, det >, < 4,
pcomp >},

where < nil, root > denotes the root of the dependency graph.
There is a large range of techniques to parse dependencies. We introduce some of

them in an order of increasing complexity, where more elaborate methods produce,
in general, better results. We will begin with dependency rules, then shift–reduce for
dependencies, constraint satisfaction, and finally statistical lexical dependencies.

11.7.1 Dependency Rules

Writing dependency rules or D-rules consists in describing possible dependency re-
lations between word categories (Covington 1990): typically a head part of speech
to a dependent part of speech (Fig. 11.22).

1. determiner ← noun. 4. noun ← verb.
2. adjective ← noun. 5. preposition ← verb.
3. preposition ← noun. 6. verb ← root.

Fig. 11.22. Examples of D-rules.

These rules mean that a determiner can depend on a noun (1) (or that a noun can
be the head of a determiner), an adjective can depend on a noun (2) and a noun can
depend on a verb (4). The rules express ambiguity. A preposition can depend either
on a verb (5) as in Bring the meal to the table or on a noun (3) as in Bring the meal
of the day. Finally, rule 6 means that a verb can be the root of the sentence.

D-rules are related to one or more functions. The first rule expresses the deter-
minative function, the second one is an attributive function, and the third rule can be
a subject, an object, or an indirect object function. Using a unification-based formal-
ism, rules can encapsulate functions, as in:
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⎢⎢⎣

category : noun
number : N
person : P
case : nominative

⎤
⎥⎥⎦ ←

⎡
⎣ category : verb

number : N
person : P

⎤
⎦

which indicates that a noun marked with the nominative case can depend on a verb.
In addition, the noun and verb share the person and number features. Unification-
based D-rules are valuable because they can easily pack properties into a compact
formula: valence, direction of dependency relation (left or right), lexical values, etc.
(Covington 1989; Koch 1993).

11.7.2 Extending the Shift–Reduce Algorithm to Parse Dependencies

Once we have written the rules, we need an algorithm to run a grammar on sentences.
Nivre (2003) proposed a dependency parser that creates a graph that he proved to
be both projective and acyclic. The parser is an extension to the shift–reduce algo-
rithm. It uses oriented D-rules to represent left, LEX(n′) ← LEX(n), and right,
LEX(n) → LEX(n′), dependencies.

As with the regular shift–reduce, Nivre’s parser uses a stack S and a list of input
words W . However, instead of finding constituents, it builds a set of arcs A repre-
senting the graph of dependencies. The triplet 〈S, W, A〉 represents the parser state.

Nivre’s parser uses two operations in addition to shift and reduce: left-arc and
right-arc:

• Left-arc adds an arc n′ → n from the next input word n′ to the top of the stack
n and reduces n from the top of the stack. The grammar must contain the rule
LEX(n′) ← LEX(n) and there must not be an arc n′′ → n already in the
graph.

• Right-arc adds an arc n → n′ from the top of the stack n to the next input word
n′ and pushes n′ on the top of the stack. The grammar must contain the rule
LEX(n) → LEX(n′) and there must not be an arc n′′ → n′ already in the
graph.

Table 11.10 shows the operations and their conditions.
The parsing algorithm is simple. The first step uses a POS tagger to annotate each

word of the input list with its part of speech. Then, the parser applies a sequence
of operations: left-arc, right-arc, reduce, and shift. Nivre (2003) experimented with
three parsing strategies that depended on the operation priorities. The two first ones
are:

• The parser uses constant priorities for the operations: left-arc > right-arc > reduce
> shift.

• The second parser uses the constant priorities left-arc > right-arc and a rule to
resolve shift/reduce conflicts. If the top of the stack can be a transitive head of
the next input word, then shift; otherwise reduce.
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Table 11.10. The parser transitions where W is the initial word list; I , the current input word
list; A, the graph of dependencies; and S, the stack.

Actions Parser actions Conditions
Initialization 〈nil, W, ∅〉
Termination 〈S, nil, A〉
Left-arc 〈n|S, n′|I,A〉 → 〈S, n′|I, A ∪ {(n′, n)}〉 LEX(n) ← LEX(n′) ∈ R

¬∃n′′(n′′, n) ∈ A
Right-arc 〈n|S, n′|I,A〉 → 〈n′|n|S, I,A ∪ {(n, n′)}〉 LEX(n) → LEX(n′) ∈ R

¬∃n′′(n′′, n′) ∈ A
Reduce 〈n|S, I,A〉 → 〈S, I, A〉 ∃n′(n′, n) ∈ A
Shift 〈S, n|I, A〉 → 〈n|S, I,A〉

Nivre’s parser can be extended to predict the parser’s sequence of actions and
to handle nonprojectivity. It then uses probabilities derived from a hand-annotated
corpus and a machine-learning algorithm (memory-based learning or support vector
machines). The extensions are described in Nivre and Scholz (2004) and Nivre and
Nilsson (2005).

11.7.3 Nivre’s Parser in Prolog

Before we start to write the parser, we need to represent the dependency rules, the
arcs, and the input sentence.

• We encode the D-rules with a d/4 predicate that describes the function and the
dependency direction:
%drule(+HeadPOS, +DependentPOS, +Function,+Direction)
drule(noun, determiner, determinative, left).
drule(noun, adjective, attribute, left).
drule(verb, noun, subject, left).
drule(verb, pronoun, subject, left).
drule(verb, noun, object, right).
drule(verb, pronoun, object, right).
drule(verb, prep, adv, _).
drule(noun, prep, pmod, right).
drule(prep, noun, pcomp, right).

• We store the words and their position using the predicate w(word, posi-
tion), and we represent the sentence The waiter brought the meal as the
list [w(the, 1), w(waiter, 2), w(brought, 3), w(the, 4),
w(meal, 5)].

• Finally, we store the dependency arcs as d(Head, Dependent, Func-
tion).

The parser code is an extension of the regular shift–reduce. The shift_re-
duce/2 predicate takes the sentence as input and returns the graph of dependencies.
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To implement it, we need an auxiliary shift_reduce/4 predicate with two addi-
tional variables: a stack and graph where we will store the current arcs. This initial
value of the stack as well as the graph is the empty list.

% shift_reduce(+Sentence, -Graph)

shift_reduce(Sentence, Graph) :-
shift_reduce(Sentence, [], [], Graph).

Thenshift_reduce/4 consists of four predicates:left_arc/6,right_-
arc/6, shift/4, and reduce/3. They are applied in the order just listed until
the sentence is an empty list:

% shift_reduce(+Words, +Stack, +CurrentGraph,
% -FinalGraph)

shift_reduce([], _, Graph, Graph).
shift_reduce(Words, Stack, Graph, FinalGraph) :-
left_arc(Words, Stack, NewStack, Graph, NewGraph),
write(’left arc’), nl,
shift_reduce(Words, NewStack, NewGraph,FinalGraph).

shift_reduce(Words, Stack, Graph, FinalGraph) :-
right_arc(Words, NewWords, Stack, NewStack, Graph,

NewGraph),
write(’right arc’), nl,
shift_reduce(NewWords, NewStack, NewGraph,

FinalGraph).
shift_reduce(Words, Stack, Graph, FinalGraph) :-
reduce(Stack, NewStack, Graph),
write(reduce), nl,
shift_reduce(Words, NewStack, Graph, FinalGraph).

shift_reduce(Words, Stack, Graph, FinalGraph) :-
shift(Words, NewWords, Stack, NewStack),
write(shift),nl,
shift_reduce(NewWords, NewStack, Graph,FinalGraph).

The shift/4 predicate removes the first word from the word list currently be-
ing parsed and puts it on the top the stack. Here appends it to the end of the Stack
list – to produce a NewStack

% shift(+WordList, -NewWordList, +Stack, -NewStack)

shift([First | Words], Words, Stack, [First| Stack]).

The reduce/3 predicate reduces the Stack provided that the word has a head
already in the graph.
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% reduce(+Stack, -NewStack, +Graph)

reduce([w(Top, PosT) | Stack], Stack, Graph) :-
member(d(_, w(Top, PosT), _), Graph).

The right_arc/6 predicate adds an arc to the graph linking the top of the
stack to the first word of the list with the conditions described in Table 11.9.

% right_arc(+WordList, -NewWordList, +Stack,
% -NewStack, +Graph, -NewGraph)

right_arc([w(First, PosF) | Words], Words,
[w(Top, PosT) |
Stack], [w(First, PosF), w(Top, PosT) | Stack],
Graph, [d(w(Top, PosT), w(First, PosF),
Function) | Graph]) :-

word(First, FirstPOS),
word(Top, TopPOS),
drule(TopPOS, FirstPOS, Function, right),
\+ member(d(_, w(First, PosF), _), Graph).

The left_arc/6 predicate adds an arc to the graph linking the first word of
the list to the top of the stack with the conditions described in Table 11.9.

% left_arc(+WordList, +Stack, -NewStack, +Graph,
% -NewGraph)

left_arc([w(First, PosF) |_], [w(Top, PosT) | Stack],
Stack, Graph, [d(w(First, PosF), w(Top, PosT),
Function) | Graph]) :-

word(First, FirstPOS),
word(Top, TopPOS),
drule(FirstPOS, TopPOS, Function, left),
\+ member(d(_, w(Top, PosT), _), Graph).

Let us use the words:

%word(+Word, +PartOfSpeech)

word(waiter, noun).
word(meal, noun).
word(the, determiner).
word(a, determiner).
word(brought, verb).
word(ran, verb).

Applying the parser to The waiter brought the meal yields:
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?- shift_reduce([w(the, 1), w(waiter, 2),
w(brought, 3), w(the, 4), w(meal, 5)], G).

shift
left arc
shift
left arc
shift
shift
left arc
right arc

G = [d(w(brought, 3), w(meal, 5), object),
d(w(meal, 5), w(the, 4), determinative),
d(w(brought, 3), w(waiter, 2), subject),
d(w(waiter, 2), w(the, 1), determinative)]

11.7.4 Finding Dependencies Using Constraints

Another strategy to parse dependencies is to use constraints in addition to D-rules.
The parsing algorithm is then framed as a constraint satisfaction problem.

Constraint dependency parsing annotates words with dependencies and functions
tags. It then applies a set of constraints to find a tag sequence consistent with all
the constraints. Some methods generate all possible dependencies and then discard
inconsistent ones (Maruyama 1990, Harper et al. 1999). Others assign one single
dependency per word and modify it (Tapanainen and Järvinen 1997).

Let us exemplify a method inspired by Harper et al. (1999) with the sentence
Bring the meal to the table. Table 11.11 shows simplified governor and function
assignments compatible with a word’s part of speech.

Table 11.11. Possible functions according to a word’s part of speech.

Parts of speech Possible governors Possible functions
Determiner Noun det
Noun Verb object, iobject
Noun Prep pcomp
Verb Root root
Prep Verb, noun mod, loc

The first step generates all possible governor and function tags. Using Ta-
ble 11.11, tagging yields:
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Words Bring the meal to the table
Position 1 2 3 4 5 6
Part of speech verb det noun prep det noun
Possible tags <nil, root> <3, det> <4, pcomp> <3, mod> <3, det> <4, pcomp>

<6, det> <1, object> <1, loc> <6, det> <1, object>
<1, iobject> <1, iobject>

Then, a second step applies and propagates the constraint rules. It checks that the
constraints do not conflict and enforces the consistency of tag sequences. Rules for
English describe for instance, adjacency (links must not cross), function uniqueness
(there is only one subject, one object, one indirect object), and topology:

• A determiner has its governor to its right-hand side.
• A subject has its governor to its right-hand side when the verb is at the active

form.
• An object and an indirect object have their governor to their left-hand side (active

form).
• A prepositional complement has its governor to its left-hand side.

Applying this small set of rules discards some wrong tags but leave some ambi-
guity.

Words Bring the meal to the table
Position 1 2 3 4 5 6
Part of speech verb det noun prep det noun
Possible tags <nil, root> <3, det> <1, object> <3, mod> <6, det> <4, pcomp>

<1, iobject> <1, loc>

11.7.5 Parsing Dependencies Using Statistical Techniques

Using constraints and statistics, it is possible to build a dependency parser that
reaches very high rates of accuracy. Here, we introduce an algorithm derived from
that of Collins (1996, 1999, 2003) where parsing corresponds to finding the most
likely dependency tree DT given a sentence S. This can be formulated as

DTbest = arg maxP (DT |S) .

Collins’ statistical dependency parser uses a cascade of three statistical modules:
a part-of-speech tagger, a noun group detector, and a dependency model. Inside a
noun group, dependency links are not ambiguous and can be determined in a fairly
straightforward fashion. Therefore the algorithm represents noun groups by their
main nouns and thus decreases its complexity. It takes the reduced tagged sentence
as an input.

Collins’ algorithm uses a statistical model composed of two terms: one corre-
sponding to noun groups, NG, and the other to dependencies, D. It can be rewritten
as:

P (DT |S) = P (NG, D |S) = P (NG |S ) × P ( D |S, NG) .
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We will focus here on dependencies only and for sake of simplicity, we will
suppose that noun groups are perfectly detected. The input of the parser is then a
reduced sentence whose words are tagged for part of speech:

S =< (w1, t1), (w2, t2), ..., (wn, tn) > .

For Bring the meal to the table, this yields

Position 1 2 3 4
Word Bring meal to table
POS verb noun prep noun

A dependency link for word i is represented as AF (i) = (hi, Ri), where hi is the
position of the governor and Ri is the relation linking both words. In our example,
AF (2) = (1, object) means that the governor of meal is word 1, i.e., bring, with the
object relation. According to the model, the most likely parse is the maximum of

P (D|NG, S) =

m∏
j=1

P (AF (j)|NG, S).

Probability estimates are obtained using a dependency treebank. Let C(R, 〈a, b〉 ,
〈c, d〉 ) be the number of times dependency relation R links words a and c with re-
spective part-of-speech tags b and d in a same sentence in the training corpus and
C(〈a, b〉 , 〈c, d〉 ), the number of times words a and c with part-of-speech tags b and
d are seen in a same sentence in the training corpus. F (R| 〈a, b〉 , 〈c, d〉 ) is the prob-
ability that 〈a, b〉 is a dependent of 〈c, d〉 with relation R given that 〈a, b〉 and 〈c, d〉
appear in the same sentence. Its estimate is defined by:

F (R| 〈a, b〉 , 〈c, d〉 ) =
C(R, 〈a, b〉 , 〈c, d〉 )
C(〈a, b〉 , 〈c, d〉 ) .

Dependencies are computed in a stochastic way. Link determination between
words corresponds to the maximum of

m∏
j=1

F (Rj | 〈wj , tj〉 ,
〈
whj

, thj

〉
),

where m is the total number of words in the sentence, F represents the probability
of a dependency link Rj between word wj of index j with part-of-speech tag tj and
word whj

with index hj and part of speech thj
.

Since there is a great likelihood of sparse data – the figure of counts C(〈wi, ti〉 ,
〈wj , tj〉 ) are too low or equal to 0 – a combination of estimates has to be devised.
Collins (1999) proposed considering, ranging from more to less accurate:

1. both words and both tags
2. wj and the two POS tags
3. whj

and the two POS tags



312 11 Parsing Techniques

4. the two POS tags alone

Estimate 1) is used first when it is available, else a combination of 2) and 3) else
4).

Estimate 4) is given by
C(R, 〈 tj〉 ,

〈
thj

〉
)

C(〈 tj〉 ,
〈
thj

〉
)

.

These probabilities do not take into account the distance between words and the
directions between governor and dependents. This is introduced by a ∆ variable
whose approximation could be ∆j,hj

= hj − j. In fact, Collins (1999) uses a more
sophisticated measure that takes into account:

• The word order between the dependents, because, according to categories, some
words tend to have their governor to their left-hand side or to their right-hand
side. English is said to be right-branching: complements often occur to the right
of the head. An example is given by prepositions, whose governor is almost sys-
tematically to the left.

• The distance, because most dependencies tend to be between adjacent or very
close words.

• The verb crossings, because dependencies rarely jump over a verb.
• Punctuation.

As a simple example, we will give possible combinations for the reduced sen-
tence Bring meal to table. Table 11.12 shows the dependencies with lexical statistics,
and Table 11.13 gives dependencies with part of speech only. The probability figure
is the product of four terms, one per word index. The maximum value corresponds
to the most likely dependency tree.

Table 11.12. Probability of dependencies between words with a model including distances.
The probability figure corresponds to the product of four probabilities. One is chosen per
word index.

Word 1 Word 2
P (root → bring/vb, ∆root)
P (meal/noun → bring/vb, ∆1,2)
P (to/prep → bring/vb, ∆1,3)
P (table/noun → bring/vb, ∆1,4)

P (root → meal/noun, ∆root)
P (bring/vb → meal/noun, ∆2,1)
P (to/prep → meal/noun, ∆2,3)
P (table/noun → meal/noun, ∆2,4)

Word 3 Word 4
P (root → to/prep,∆root)
P (bring/vb → to/prep,∆3,1)
P (meal/noun → to/prep,∆3,2)
P (table/noun → to/prep,∆3,4)

P (root → table/noun, ∆root)
P (bring/vb → table/noun, ∆4,1)
P (to/prep → table/noun, ∆4,2)
P (meal/noun → table/noun, ∆4,3)
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Table 11.13. Probability of dependencies between part of speech with a model including dis-
tances. The probability figure corresponds to the product of four probabilities, one per word
index.

Word 1 Word 2
P (root → vb, ∆root)
P (noun → vb, ∆1,2)
P (prep → vb, ∆1,3)
P (noun → vb, ∆1,4)

P (root → noun, ∆root)
P (vb → noun, ∆2,1)
P (prep → noun, ∆2,3)
P (noun → noun, ∆2,4)

Word 3 Word 4
P (root → prep,∆root)
P (vb → prep,∆3,1)
P (noun → prep,∆3,2)
P (noun → prep,∆3,4)

P (root → noun, ∆root)
P (vb → noun, ∆4,1)
P (prep → noun, ∆4,2)
P (noun → noun, ∆4,3)

Collins used dependencies to parse constituents. To do this, he mapped func-
tion relations R described in this section onto phrase-structure rules and represented
dependencies between their respective words using a lexical head in each rule. He
singled out one symbol in the right-hand side of each phrase-structure rule to be the
governor of the remaining symbols. For example, the rules

s --> np, vp.
vp --> verb, np.
np --> det, noun.

select a noun as the head of a noun phrase, a verb as the head of the verb phrase, and
vp as the head of the sentence. Proceeding from the bottom up, the Collins parser
annotates dependencies with phrase-structure rules. In our example, the sentence
rule is obtained, while the verb percolates to the root of the sentence through the
verb phrase.

11.8 Further Reading

Parsing techniques have been applied to compiler construction as well as to human
languages. There are numerous references reviewing formal parsing algorithms, both
in books and articles. Aho et al. (1986) is a starting point.

Most textbooks in computational linguistics describe parsing techniques for nat-
ural languages. Pereira and Shieber (1987), Covington (1994), Gazdar and Mellish
(1989), and Gal et al. (1989) introduce symbolic techniques and include implementa-
tions in Prolog. Allen (1994), Jurafsky and Martin (2000), and Manning and Schütze
(1999) are other references that include surveys of statistical parsing. All these books
mostly describe, if not exclusively, constituent parsing.

Prepositional phrase attachment is a topic that puzzled many of those adopting
the constituency formalism. It often receives special treatment – a special section
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in books. For an introduction, see Hindle and Rooth (1993). Techniques to solve
it involved the investigation of lexical preferences that probably started a shift of
interest toward dependency grammars.

While most research in English has been done using the constituency formal-
ism – and many computational linguists still use it – dependency inspires much of
the present work. Covington (1990) is an early example that can parse discontinu-
ous constituents. Tapanainen and Järvinen (1997) describe a parsing algorithm using
constraint rules and producing a dependency structure where links are annotated with
functions. Constant (1991), El Guedj (1996), and Vergne (1998) provide accounts in
French; Hellwig (1980, 1986) was among the pioneers in German. Some authors re-
formulated parsing a constraint satisfaction problem (CSP) sometimes combining it
with a chart. Constraint handling rules (CHR) is a simple, yet powerful language to
define constraints (Frühwirth 1998). Constraint handling rules are available in some
Prologs, notably SWI Prolog. In 2006, the Tenth Conference on Computational Nat-
ural Language Learning (CoNLL-X) organized its shared task on multilingual de-
pendency parsing. The conference site provides background literature, data sets, and
an evaluation scheme (http://www.cnts.ua.ac.be/conll/). It is an extremely valuable
source of information on dependency parsing.

Statistical parsing is more recent than symbolic approaches. Charniak (1993) is a
good account to probabilistic context-free grammars, PCFG. Manning and Schütze
(1999) is a comprehensive survey of statistical techniques used in natural language
processing. See also the two special issues of Computational Linguistics (1993, vol.
19, nos. 1 and 2). Collins’ dissertation (1999) is an excellent and accessible descrip-
tion of statistical dependency parsing. Bikel (2004) is a complement to it. Charniak
(2000) describes another efficient parser.

Quality of statistics and rules is essential to get good parsing performance. Proba-
bilities are drawn from manually bracketed corpora, and their quality depends on the
annotation and the size of the corpus. A key problem is sparse data. For a good review
on how to handle sparse data, see Collins (1999) again. Symbolic rules can be tuned
manually by expert linguists or obtained automatically using inductive logic tech-
niques, either for constituents or dependencies. Zelle and Mooney (1997) propose
an inductive logic programming method in Prolog to obtain rules from annotated
corpora.

Exercises

11.1. The shift–reduce program we have seen stores words at the end of the list rep-
resenting the stack. Subsequently, we use append/3 to traverse the stack and match
it to grammar rules. Modify this program so that words are added to the beginning
of the list.

Hint: you will have to reverse the stack and the rules so that rule s --> np,
vp is encoded rule([vp, np | X], [s | X]).

11.2. Trace the shift–reduce parser with a null symbol word(d, []) and describe
what happens.
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11.3. Modify the shift–reduce parser so that it can handle lists of terminal symbols
such as word(d, [all, the]).

11.4. Complete arcs of Fig. 11.13 with the Earley algorithm.

11.5. Trace the Earley algorithm in Prolog with the sentence Bring the meal of the
day.

11.6. In the implementation of the Earley’s algorithm, we represented dotted rules as
np --> np • pp [0, 2]
by Prolog facts as
arc(np, [np, ’.’, pp], 0, 2).
This representation involves searching a dot in a list, which is inefficient. Modify the
program so that it can use an arc representation, where the sequence of categories to
the left and to the right of the dot are split into two lists, as with arc(np, [np],
[pp], 0, 2).

11.7. The Earley chart algorithm accepts correct sentences and rejects ill-formed
ones, but it does not provide us with the sentence structure. Write a retrieve
predicate that retrieves parse trees from the chart.

11.8. Modify the Cocke, Younger, and Kasami Prolog program to include parsing
probabilities to constituents in the chart.

11.9. Modify the Cocke, Younger, and Kasami Prolog program to produce the best
parse tree as a result of the analysis. Hint: to retrieve the tree more easily, use an
array of back pointers: an array storing for each best constituent over the interval i
...j, the rule that produced it, and the value of k.

11.10. Implement the Collins dependency parser in Prolog.
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Semantics and Predicate Logic

12.1 Introduction

Semantics deals with the meaning of words, phrases, and sentences. It is a wide
and open subject intricately interwoven with the structure of the mind. The potential
domain of semantics is immense and covers many of the human cognitive activities.
It has naturally spurred a great number of theories. From the philosophers of ancient
and medieval times, to logicians of the 19th century, psychologists and linguists of
the 20th century, and now computer scientists, a huge effort has been made on this
subject.

Semantics is quite subtle to handle or even to define comprehensively. It would be
a reckless challenge to claim to introduce an exhaustive view of the topic. It would be
even more difficult to build a unified point of view of all the concepts that are attached
to it. In this chapter, we will cover formal semantics. This approach to semantics is
based on logic and is the brainchild of both linguists and mathematicians. It addresses
the representation of phrases and sentences, the definition of truth, the determination
of reference (linking words to the world’s entities), and some reasoning. In the next
chapter, we will review lexical semantics.

12.2 Language Meaning and Logic: An Illustrative Example

Roughly defined, formal semantics techniques attempt to map sentences onto logi-
cal formulas. They cover areas of sentence representation, reference, and reasoning.
Let us take an example to outline and illustrate layers involved in such a semantic
processing. Let us suppose that we want to build a robot to serve us a dinner. To be
really handy, we want to address and control our beast using natural language. So
far, we need to implement a linguistic interface that will understand and process our
orders and a mechanical device that will carry out the actions in the real world. Given
the limits of this book, we set aside the mechanical topics and we concentrate on the
linguistic part.
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To avoid a complex description, we confine the scope of the robot’s understand-
ing to a couple of orders and questions. The robot will be able to bring meals to the
table, to answer a few questions from the patrons, and to clear the table once the
meals have been eaten. Now, let us imagine a quick dialogue between the two diners,
Socrates and Pierre, and the robot (Table 12.1).

Table 12.1. A dialogue between diners and the robot.

Dialogue turns Sentences
Socrates orders the dinner from the robot Bring the meal to the table
The robot, after it has brought the meal, warns the diners The meal is on the table. It is hot
Pierre, who was not listening Is this meal cold?
. . . Miam miam
Socrates, after the dinner is finished Clear the table

Processing the sentences’ meaning from a logical viewpoint requires a set of
steps that we can organize in operating modules making parts of a semantic inter-
pretation system. The final organization of the modules may vary, depending on the
final application.

• The first part has to represent the state of the world. There is a table, diners
around the table, a meal somewhere, and a robot. A condition to any further pro-
cessing is to have them all in a knowledge base. We represent real entities, per-
sons, and things using symbols that we store in a Prolog database. The database
should reflect at any moment the current state of the world and the properties of
the entities. That is, any change in the world should update the Prolog database
correspondingly. When the robot mechanically modifies the world or when it
asserts new properties on objects, a corresponding event has to appear in the
database.

• The second part has to translate phrases or sentences such as The robot brought
the meal or the meal on the table into formulas a computer can process. This also
involves a representation. Let us consider the phrase the meal on the table. There
are two objects, x and y, with x being a meal and y being a table. In addition,
both objects are linked together by the relation that x is on y. A semantic module
based on formal logic will translate such a phrase into a logical form compatible
with the representation of objects into the database. This module has also to assert
it into the database.

• A third part has to reference the logical forms to real objects represented in the
database. Let us suppose that the robot asserts: The meal is on the table. It is hot.
Referencing a word consists of associating it to an object from the real world
(more accurately, to its corresponding symbol in the database). Referencing is
sometimes ambiguous. There might be two meals: one being served and another
one in the refrigerator. The referencing module must associate the word meal to
the right object. In addition, referencing has also to keep track of entities men-
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tioned in the discourse and to relate them. It in the second sentence refers to the
same object as the meal on the table in the first sentence, and not to another meal
in the refrigerator.

• A fourth part has to reason about the world and the sentences. Consider the ut-
terance The meal is on the table. Is it cold? Is the latter assertion true? Is it false?
To answer this question, the semantic interpreter must determine whether there
is really a meal on the table and whether it is cold. To check it, the interpreter
needs either to look up whether this fact is in the database or to have external
devices such as a temperature sensor and a definition of cold. In addition, if a
fact describes the meal as hot, a reasoning process must be able to tell us that
if something is hot, it is not cold. We can implement such reasoning in Prolog
using rules and an inference mechanism.

12.3 Formal Semantics

Of the many branches of semantics, formal semantics is one of the best-established
in the linguistic community. The main assumption behind it is that logic can model
language and, by extension, human thought. This has many practical consequences
because, at hand, there is an impressive set of mathematical models and tools to
exploit. The most numerous ones resort to the first-order predicate calculus. Such
tools were built and refined throughout the 20th century by logicians such as Jacques
Herbrand, Bertrand Russell, and Alfred Tarski.

The formal semantics approach is also based on assumptions linking a sentence
to its semantic representation and most notably the principle of compositionality.
This principle assumes that a sentence’s meaning depends on the meaning of the
phrases that compose it: “the meaning of the whole is a function of the meaning of
its parts.” A complementary – and maybe more disputable – assumption is that the
phrases carrying meaning can be mapped onto syntactic units: the constituents. As a
result, the principle of compositionality ties syntax and semantics together. Though
there are many utterances in English, French, or German that are not compositional,
these techniques have proved of interest in some applications.

12.4 First-Order Predicate Calculus to Represent the State of
Affairs

The first concrete step of semantics is to represent the state of affairs: objects, an-
imals, people, and observable facts together with properties of things and relations
between them. A common way to do this is to use predicate-argument structures.
The role of a semantic module will then be to map words, phrases, and sentences
onto symbols and structures characterizing things or properties in a given context:
the universe of discourse.

First-order predicate calculus (FOPC) is a convenient tool to represent things
and relations. FOPC has been created by logicians and is a proven tool to express
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and handle knowledge. It features constants, variables, and terms that correspond ex-
actly to predicate-argument structures. We examine here these properties with Pro-
log, which is based on FOPC.

12.4.1 Variables and Constants

We can map things, either real or abstract, onto constants – or atoms – and subse-
quently identify the symbols to the things. Let us imagine a world consisting of a ta-
ble and two chairs with two persons in it. This could be represented by five constants
stored in a Prolog database. Then, the state of affairs is restrained to the database:

% The people:
’Socrates’.
’Pierre’.

% The chairs:
chair1. % chair #1
chair2. % chair #2

% The unique table:
table1. % table #1

A second kind of device, Prolog’s variables such as X, Y, or Z, can unify with
any entity of the universe and hold its value. And variable X can stand for any of the
five constants.

12.4.2 Predicates

Predicates to Encode Properties. Predicates are symbols representing properties
or relations. Predicates indicate, for instance, that ’Pierre’ has the property of
being a person and that other things have the property of being objects. We state this
simply using the person and object symbols as functors (predicate names) and
’Pierre’ and table1 as their respective arguments. We add these facts to the
Prolog database to reflect the state of the world:

person(’Pierre’).
person(’Socrates’).

object(table1).
object(chair1).
object(chair2).

We can be more specific and use other predicates describing that table1 is a
table, and that chair1 and chair2 are chairs. We assert this using the table/1
and chair/1 predicates:
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table(table1).

chair(chair1).
chair(chair2).

Predicates to Encode Relations. Predicates can also describe relations between
objects. Let us imagine that chair chair1 is in front of table table1, and that
Pierre is on table1. We can assert these relative positions using functors, such as
in_front_of/2 or on/2, linking respectively argumentschair1 and table1,
and ’Pierre’ and table1:

in_front_of(chair1, table1).

on(’Pierre’, table1).

So far, we have only used constants (atoms) as arguments in the properties and
in the predicates representing them. If we want to describe more accurately three-
dimensional scenes such as that in Fig. 12.1, we need more elaborate structures.

x

y

z
table1

chair1

chair2

Fig. 12.1. A three-dimensional scene.

In such a scene, a coordinate system is necessary to locate precisely entities of
the world. Since we are in a 3D space, 3D vectors give the position of objects that we
can represent using the v/3 predicate. v(?x, ?y, ?z) indicates the coordinate
values of a point on x, y, and z axes. To locate objects, we will make use of v/3.

For sake of simplicity here, we approximate an object’s position to its gravity
center. We locate it with the position/2 predicate. Position facts are compound
terms that take the name of an object and the vector reflecting its gravity center as
arguments:

position(table1, v(0, 0, 0)).
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position(chair1, v(1, 1, 0)).
position(chair2, v(10, -10, 0)).

12.5 Querying the Universe of Discourse

Now, we have a database containing facts, i.e., properties and relations uncondition-
ally true that describe the state of affairs. Using queries, the Prolog interpreter can
check whether a fact is true or false:

?- table(chair1).
No

?- chair(chair2).
Yes

In addition, unification enables Prolog to determine subsets covering certain
properties:

?- chair(X).
X = chair1;
X = chair2

We can get the whole subset in one shot using bagof/3. The alternate query
yields:

?- bagof(X, chair(X), L).
L = [chair1, chair2]

The built-in bagof/3 predicate has a cousin: setof/3. The difference is that
setof/3 sorts the elements of the answer and removes possible duplicates.

We may want to intersect properties and determine the set of the corresponding
matching objects. Prolog can easily do this using conjunctions and shared variables.
For instance, we may want to select from the set of chairs those that have the property
of being in front of a table. The corresponding query is:

?- chair(X), in_front_of(X, Y), table(Y).
X = chair1, Y = table1

12.6 Mapping Phrases onto Logical Formulas

Using predicate-argument structures, we can map words, phrases, and sentences onto
logical formulas. Simplifying a bit, nouns, adjectives, or verbs describe properties
and relations that we can associate to predicates. Having said this, we have solved one
part of the problem. We need also to determine the arguments that we will represent
as logical variables.
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Arguments refer to real-world entities, and the state of affair should define their
value. We then need a second process to have a complete representation that will
replace – unify – each variable with a logical constant. We will first concentrate on
the representation of words or phrases and leave the arguments uninstantiated for
now.

As a notation, we use λ-expressions that provide an abstraction of properties or
relations. The λ symbol denotes variables that we can substitute with an entity of the
real world, such as:

λx.property(x)

or
λy.λx.property(x, y)

where λx indicates that we may supply an expression or a value for x.
Supplying such a value is called a β-reduction. It replaces all the occurrences of

x in the expression and eliminates λx:

(λx.property(x))entity#1

yields
property(entity#1)

λ is a right-associative operator that we cannot get with Western keyboards. We
use the symbol ˆ to denote it in Prolog. And Xˆproperty(X) is equivalent to
λx.property(x).

12.6.1 Representing Nouns and Adjectives

Nouns or adjectives such as waiter, patron, yellow, or hot are properties that we map
onto predicates of arity 1. For example, we represent the noun chair by:

λx.chair(x)

whose equivalent notation in Prolog is Xˆchair(X). Let us suppose that chair1 is
an entity in the state of affairs. We can supply it to this λ-expression:

(λx.chair(x))chair1

and carry out a β-reduction that yields:

chair(chair1).

Table 12.2 shows some examples of representation of nouns and adjectives.
We can consider proper nouns as well as common nouns. In this case, we will

have predicates such as Xˆpierre(X) and Xˆsocrates(X). This means that
there are several Pierres and Socrates that can be unified with variable X. We can
also make a nice distinction between them and treat proper nouns as constants like
we have done before. In this case, there would be one single Pierre and one single
Socrates in the world. Such a choice depends on the application.
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Table 12.2. Representation of nouns and adjectives.

Lexical representations Sentences Semantic representations
Nouns
Xˆchair(X) chair1 is a chair chair(chair1)
Xˆpatron(X) Socrates is a patron patron(’Socrates’)
Adjectives
Xˆyellow(X) table1 is yellow yellow(table1)
Xˆhot(X) meal2 is hot hot(meal2)

12.6.2 Representing Noun Groups

Noun groups may consist of a sequence of adjectives and a head noun. We form
their semantic representation by combining each representation in a conjunction of
properties (Table 12.3).

Table 12.3. Noun groups.

Noun groups Semantic representation
hot meal Xˆ(hot(X), meal(X))
fast server Xˆ(fast(X), server(X))
yellow big table Xˆ(yellow(X), big(X), table(X))

The case is trickier when we have compounded nouns such as:

computer room
city restaurant
night flight

Noun compounds are notoriously ambiguous and require an additional interpre-
tation. Some compounds should be considered as unique lexical entities such a com-
puter room. Others can be rephrased with prepositions. A city restaurant is similar to
a restaurant in the city. Others can be transformed using an adjective. A night flight
could have the same interpretation as a late flight.

12.6.3 Representing Verbs and Prepositions

Verbs such as run, bring, or serve are relations. We map them onto predicates of
arity 1 or 2, depending on whether they are intransitive or transitive, respectively
(Table 12.4).

Prepositions usually link two noun groups, and like transitive verbs, we map them
onto predicates of arity 2 (Table 12.5).
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Table 12.4. Representation of verbs.

Lexical representations Sentences Sentence representations
Intransitive verbs
Xˆran(X) Pierre ran ran(’Pierre’)
Xˆsleeping(X) Socrates is sleeping sleeping(’Socrates’)
Transitive verbs
YˆXˆbrought(X,Y) Roby served a meal served(’Roby’, Zˆmeal(Z))
YˆXˆserved(X, Y) Roby brought a plate brought(’Roby’,Zˆplate(Z))

Table 12.5. Preposition representation.

Lexical represen-
tations

Phrases Phrase representations

YˆXˆin(X, Y) The fish in the plate in(Zˆfish(Z), Tˆplate(T))
YˆXˆfrom(X,Y) Pierre from Normandy from(’Pierre’, ’Normandy’)
YˆXˆwith(X,Y) The table with a napkin with(Zˆtable(Z), Tˆnapkin(T))

12.7 The Case of Determiners

12.7.1 Determiners and Logic Quantifiers

So far, we have dealt with adjectives, nouns, verbs, and prepositions, but we have not
taken determiners into account. Yet, they are critical in certain sentences. Compare:

1. A waiter ran
2. Every waiter ran
3. The waiter ran

These three sentences have a completely different meaning, although they differ
only by their determiners. The first sentence states that there is a waiter and that
s/he ran. We can rephrase it as there is an x that has a conjunction of properties:
waiter(x) and ran(x). The second sentence asserts that all x having the property
waiter(x) also have the property ran(x).

Predicate logic uses two quantifiers to transcribe these statements into formulas:

• The existential quantifier, denoted ∃, and read there exists, and
• The universal quantifier, denoted ∀, and read for all

that we roughly associate to determiners a and every, respectively.
The definite determiner the refers to an object supposedly unique over the whole

universe of discourse. We can connect it to the restricted existential quantifier de-
noted ∃! and read there exists exactly one. The waiter ran should then be related to a
unique waiter.

We can also use the definite article to designate a specific waiter even if there
are two or more in the restaurant. Strictly speaking, the is ambiguous in this case
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because it matches several waiters. The refers then to an object unique in the mind
of the speaker as s/he mentions it, for instance, the waiter s/he can see at the very
moment s/he is saying it or the waiter taking care of her/his table. The universe of
discourse is then restricted to some pragmatic conditions. We should be aware that
these conditions may bring ambiguity in the mind of the hearer – and maybe in that
of the speaker.

12.7.2 Translating Sentences Using Quantifiers

Let us now consider determiners when translating sentences and let us introduce
quantifiers. For that, we associate determiner a with quantifier ∃ and every with ∀.
Then, we make the quantifier the head of a logical formula that consists either of
a conjunction of predicates for determiner a or of an implication with every. The
arguments are different depending on whether the verb is transitive or intransitive.

With intransitive verbs, the logical conjunctions or implications link the subject
to the verb. Table 12.6 shows a summary of this with an alternate notation using Pro-
log terms. Predicates – principal functors – are then the quantifiers’ names: all/3,
exists/3, and the/3.

Table 12.6. Representation of sentences with intransitive verbs using determiners.

Sentences Logical representations
A waiter ran ∃x(waiter(x)∧ ran(x))

exists(X, waiter(X), ran(X))
Every waiter ran ∀x(waiter(x) ⇒ ran(x))

all(X, waiter(X), ran(X))
The waiter ran ∃!x(waiter(x)∧ ran(x))

the(X, waiter(X), ran(X))

When sentences contain a transitive verb like:

A waiter brought a meal
Every waiter brought a meal
The waiter brought a meal

we must take the object into account. In the previous paragraph, we have represented
subject noun phrases with a quantified logical statement. Processing the object is
similar. In our examples, we map the object a meal onto the formula:

∃y(meal(y))

Then, we link the object’s variable y to the subject’s variable x using the main
verb as a relation predicate:

brought(x, y)

Finally, sentence A waiter brought a meal is represented by:
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∃x(waiter(x) ∧ ∃y(meal(y) ∧ brought(x, y)))

Table 12.7 recapitulates the representation of the examples.

Table 12.7. Logical representation of sentences with transitive verbs using determiners.

Sentences Logical representation
A waiter brought a meal ∃x(waiter(x)∧ ∃y(meal(y)∧ brought(x, y)))

exists(X, waiter(X),
exists(Y, meal(Y), brought(X, Y))

Every waiter brought a meal ∀x(waiter(x) ⇒ ∃y(meal(y)∧ brought(x, y)))
all(X, waiter(X),

exists(Y, meal(Y), brought(X, Y))
The waiter brought a meal ∃!x(waiter(x)∧ ∃y(meal(y)∧ brought(x, y)))

the(X, waiter(X),
exists(Y, meal(Y), brought(X, Y))

12.7.3 A General Representation of Sentences

The quantifiers we have used so far are the classical ones of logic. Yet, in addition
to a, every, and the, there are other determiners such as numbers: two, three, four;
indefinite adjectives: several, many, few; possessive pronouns: my, your; demonstra-
tives: this, that; etc. These determiners have no exact counterpart in the world of
logic quantifiers.

A more general representation uses determiners themselves as functors of Prolog
terms instead of logic quantifier names. The subject noun phrase’s determiner will be
the principal functor of term mapping the whole sentence. Subsequent determiners
will be the functors of inner terms. For example,

Two waiters brought our meals

is translated into

two(X, waiter(X), our(Y, meal(Y), brought(X, Y)))

Figure 12.2 depicts this term graphically.
Such a formalism can be extended to other types of sentences that involve more

complex combinations of phrases (Colmerauer 1982). The basic idea remains the
same: we map sentences and phrases onto trees – Prolog terms – whose functor
names are phrases’ determiners and whose arity is 3. Such terms are also called
ternary trees. The top node of the tree corresponds to the sentence’s first determiner
(Fig. 12.3). The three arguments are:

• a variable that the determiner introduces into the semantic representation, say X
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Two

X waiter our

X Y meal brought

Y X Y

Fig. 12.2. Semantic representation of Two waiters brought our meals.

• the representation of the first noun phrase bound to the latter variable, that is X
here

• the representation of the rest of the sentence, which we give the same recursive
structure

As a result, a sentence is transformed into the Prolog predicate:determiner(X,
SemNP, SemRest) (Fig. 12.3).

determiner

X
Semantics of the noun
phrase: SemNP(X...)

Semantics of the rest of
the sentence: SemRest

Fig. 12.3. Semantic representation using ternary trees.

This representation also enables us to process relative clauses and adjuncts. We
represent them as a conjunction of properties. For example,

The waiter who has a cap

is translated into

the(X, (waiter(X), a(Y, cap(X), has(X, Y))), P)

where the second argument corresponds to the relative clause, the comma (,) be-
tween waiter(X) and a(Y, cap(X), has(X, Y)) stands for a conjunction
of these properties, and where P is linked with a possible rest of the sentence. If we
complement this phrase with a verb phrase:

The waiter who has a cap brought a meal

we can give a value to P and the complete sentence representation will be (Fig. 12.4):

the(X,
(waiter(X), a(Y, cap(X), has(X, Y))),
a(Z, meal(Z), brought(X, Z))).
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the

X , a

waiter(X) a Z meal(Z) brought(X, Z)

Y cap(X) has(X, Y)

Fig. 12.4. Representation of The waiter who has a cap brought a meal.

12.8 Compositionality to Translate Phrases to Logical Forms

In Chap. 8, we used λ-calculus and compositionality to build a logical form out of a
sentence. We will resort to these techniques again to incorporate the representation of
determiners. Just like the case for nouns and verbs, we will process determiners using
arguments in the DCG rules that will carry their partial semantic representation. The
construction of the logical form will proceed incrementally using Prolog’s unification
while parsing the phrases and the sentence. The semantic composition of a sentence
involves:

1. the translation of the first noun phrase – the subject
2. the translation of the verb phrase – the predicate – that contains a possible second

noun phrase – the object

From the representation we provided in Chap. 8, the main change lies in the noun
phrase translation. We approximated its semantics to the noun itself. Now we refine
it into:

determiner(X, SemNP, SemRest).

12.8.1 Translating the Noun Phrase

To obtain SemNP, we have to compose the semantics of the determiner and of the
noun, knowing that the noun’s representation is:

noun(X^waiter(X)) --> [waiter].

Since the determiner must form the top node of the semantic tree, it has to embed
an incomplete representation of the whole phrase. If we go back to the principles of
λ-calculus, we know that the λ-variable indicated roughly that we request a missing
value. In this case, the determiner needs the noun representation to reduce it. In
consequence, variables in the noun phrase rule must be:

np(Sem) --> det((X^SemNP)^Sem), noun(X^SemNP).
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We need to specify a variable X in the λ-expression of this rule, because it unifies with
the Sem term, that is, with its first argument, as well as with SemNP and SemRest.

To write the determiner’s lexical rule, we have now to proceed down into the
structure details of Sem. The term Sem reflects a logical form of arity 3. It obtained
its second argument SemNP from the subject – it did this in the np rule. It has to get
its third argument, SemRest, from the verb and the object. SemRest will be built
by the verb phrase vp, and since it is not complete at the moment, we denote it with
a λ-expression. So, variables in the determiner rules are:

det((X^SemNP)^(Y^SemRest)^a(X, SemNP, SemRest)) -->
[a].

Again, we must specify the Y variable that is to be bound in SemRest.
Using these rules, let us process a waiter. They yield the logical form:

(Y^SemRest)^a(X, waiter(X), SemRest)

whose λ-variable (YˆSemRest)ˆ requests the semantic value of the verb phrase.
The sentence rule s provides it and builds the complete representation, where vp
brings SemRest:

s(Sem) --> np((Y^SemRest)^Sem), vp(SemRest).

12.8.2 Translating the Verb Phrase

Now, let the verb phrase rules compose the semantics of the rest (SemRest). The
representation of the verbs remains unchanged. The verbs feature a single variable
when intransitive, as in:

verb(X^rushed(X)) --> [rushed].

and two variables when transitive:

verb(Y^X^ordered(X, Y)) --> [ordered].

Verb phrase semantics is simple with an intransitive verb:

vp(X^SemRest) --> verb(X^SemRest).

It is a slightly more complicated when there is an object. As for the subject, the
object’s determiner embeds a ternary tree as a representation (Fig. 12.2). It introduces
a new variable Y and contains a λ-expression that requests the representation of the
verb. This λ-expression surfaces at the verb phrase level to bind the verb semantics
to the third argument in the ternary tree. Let us name it (YˆSemVerb)ˆ. It enables
us to write the vp rule:

vp(X^SemRest) -->
verb(Y^X^SemVerb),
np((Y^SemVerb)^SemRest).
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Finally, the whole program consists of these rules put together:

s(Sem) --> np((X^SemRest)^Sem), vp(X^SemRest).

np((X^SemRest)^Sem) -->
determiner((X^SemNP)^(X^SemRest)^Sem),
noun(X^SemNP).

vp(X^SemRest) --> verb(X^SemRest).
vp(X^SemRest) -->
verb(Y^X^SemVerb),
np((Y^SemVerb)^SemRest).

Let us also write a couple of vocabulary rules:

noun(X^waiter(X)) --> [waiter].
noun(X^patron(X)) --> [patron].
noun(X^meal(X)) --> [meal].

verb(X^rushed(X)) --> [rushed].
verb(Y^X^ordered(X, Y)) --> [ordered].
verb(Y^X^brought(X, Y)) --> [brought].

determiner((X^SemNP)^(X^SemRest)^a(X, SemNP,
SemRest)) --> [a].
determiner((X^SemNP)^(X^SemRest)^the(X, SemNP,
SemRest)) --> [the].

These rules applied to the sentence The patron ordered a meal yield:

?- s(Sem, [the, patron, ordered, a, meal], []).

Sem =
the(_4,patron(_4),a(_32,meal(_32),ordered(_4,_32)))

where _4 and _32 are Prolog internal variables. Let us rename them X and Y to
provide an easier and equivalent reading:

Sem = the(X, patron(X), a(Y, meal(Y), ordered(X, Y)))

Similarly, the waiter rushed produces

Sem = the(X, waiter(X), rushed(X))

12.9 Augmenting the Database and Answering Questions

Now that we have built a semantic representation of a sentence, what do we do with
it? This has two answers, depending on whether it is a declaration or a question.
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We must keep in mind that the state of affairs – here the Prolog database – reflects
the total knowledge available to the interpretation system. If it is a declaration – a
statement from the user – we must add something because it corresponds to new
information. Conversely, if the user asks a question, we must query the database to
find a response. In this section, we will review some straightforward techniques to
implement it.

12.9.1 Declarations

When the user utters a declaration, the system must add its semantic representation to
the description of the state of affairs. With a Prolog interpreter, the resulting semantic
fact – corresponding, for example, to determiner(X, NP, Rest) – will have
to be asserted to the database.

We can carry this out using one of the asserta or assertz predicates. The
system builds the semantic representation while parsing and asserts the new fact
when it has finished, that is, after the sentence rule. Since asserta is a Prolog
predicate and we are using DCG rules, we enclose it within curly brackets (braces).
The rule

sentence(Sem) -->
np(...), vp(...), {asserta(Sem), ...}.

will result into a new Sem predicate asserted in the database once the sentence has
been parsed.

12.9.2 Questions with Existential and Universal Quantifiers

In the case of a question, the parser must also build a representation. But the resulting
semantic formula should be interpreted using inference rules that query the system to
find an answer. Questions may receive yes or no as an answer. They may also provide
the value of a fact from the database.

Yes/no questions generally correspond to sentences beginning with an auxiliary
verb such as do, is, have in English, with Est-ce que in spoken French, and with a verb
in German. Other types of questions begin with wh-words such as what, who, which
in English, with qu-words in French such as quel, qui, with w-words in German such
as wer, wen.

We must bring some modifications to the parser’s rules to accept questions, al-
though basically the sentence structure remains the same. Let us suppose that we
deal with very simple yes/no questions beginning with auxiliary do. The rule struc-
ture after the auxiliary is that of a declaration. Once the question has been parsed, the
system must “call” the semantic fact resulting from the parsing to answer it. We do
this using the call predicate at the end of rules describing the sentence structure.
The system will thus succeed and report a yes, or fail and report a no:

sentence(Sem) -->
[do], np(...), vp(...), {call(Sem), ...}.
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If the sentence contains determiners, the Sem fact will include them. Notably, the
subject noun phrase’s determiner will be the predicate functor: determiner(X,
Y, Z). For example,

Did a waiter rush

will produce Sem = a(X, waiter(X), rushed(X))
To call such predicates, we must write inference rules corresponding to the

determiner values. The most general cases correspond to the logical quantifiers
exists, which roughly maps a, some, certain, . . . , and to the universal quantifier
all.

Intuitively, a formula such as:

exists(X, waiter(X), rushed(X)),

corresponding to the sentence:

A waiter rushed

should be mapped onto to the query:

?- waiter(X), rushed(X).

and

a(X, waiter(X), a(Y, meal(Y), brought(X, Y)).

should lead to the recursive call:

?- waiter(X), a(Y, meal(Y), brought(X, Y)).

In consequence, exists can be written in Prolog as simply as:

exists(X, Property1, Property2) :-
Property1,
Property2,
!.

We could have replaced exists/3 with a/3 or some/3 as well.
The universal quantifier corresponds to logical forms such as:

all(X, waiter(X), rushed(X))

and

all(X, waiter(X), a(Y, meal(Y), brought(X, Y)).

We map these forms onto Prolog queries using a double negation, which produces
equivalent statements. The first negation creates an existential quantifier correspond-
ing to
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There is a waiter who didn’t rush
and
There is a waiter who didn’t brought a meal

And the second one is interpreted as:

There is no waiter who didn’t rush
and
There is no waiter who didn’t brought a meal

Using the same process, we translate the double negation in Prolog by the rule:

all(X, Property1, Property2) :-
\+ (Property1, \+ Property2),
!.

We may use an extra call to Property1 before the negation to ensure that there are
waiters.

12.9.3 Prolog and Unknown Predicates

To handle questions, we want Prolog to retrieve the properties that are in the database
and instantiate the corresponding variables. If no facts matching these properties
have been asserted before, we want the predicate call to fail. With compiled Prologs,
supporting ISO exception handling, a call will raise an exception if the predicate is
not in the database. Fortunately, there are workarounds. If you want that the unknown
predicates fail silently, just add:

:- unknown(_, fail).

in the beginning of your code.
If you know the predicate representing the property in advance, you may define

it as dynamic:

:- dynamic(predicate/arity).

Finally, instead of calling the predicate using

Property

or

call(Property)

you can also use

catch(Property,
error(existence_error(procedure, _Proc), _),
fail)

which behaves like call(Property) except that if the predicate is undefined it
will fail.
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12.9.4 Other Determiners and Questions

Other rules corresponding to determiners such as many, most, and more are not so
easy to write as the previous ones. They involve different translations depending on
the context and application. The reader can examine some of them in the exercise
list.

Questions beginning with wh-words are also more difficult to process. Some-
times, they can be treated in a way similar to yes/no questions. This is the case for
which or who, which request the list of the possible solutions to predicate exists.
Other wh-words, such as where or when, involve a deeper understanding of the con-
text, possibly spatial or time reasoning. These cases are out of the scope of this book.

From this chapter, the reader should also be aware that the presentation has been
simplified. In “real” natural language, many sentences are very difficult to translate.
Notably, ambiguity is ubiquitous, even in benign sentences such as

Every caterpillar is eating a hedgehog

where two interpretations are possible.
Mapping an object must also take the context into account. If a patron says This

meal, pointing to it with his/her finger, no ambiguity is possible. But, we then need a
camera or tracking means to spot what is the user’s gesture.

12.10 Application: The Spoken Language Translator

12.10.1 Translating Spoken Sentences

The Core Language Engine (CLE, Alshawi 1992) is a workbench aimed at process-
ing natural languages such as English, Swedish, French, and Spanish. The CLE has
a comprehensive set of modules to deal with morphology, syntax, and semantics.
It provides a framework for mapping any kind of sentence onto logical forms. The
CLE, which was designed at the Stanford Research Institute in Cambridge, England,
is implemented in Prolog.

CLE has been used in applications, the most dramatic of which is definitely
the Spoken Language Translator (SLT, Agnäs et al. 1994). This system translates
spoken sentences from one language into another for language pairs such as En-
glish/Swedish, English/French, and Swedish/Danish.

Translation operates nearly in real time and has reached promising quality levels.
Although SLT never went beyond the demonstration stage, it was reported that it
could translate more than 70% of the sentences correctly for certain language pairs.
Table 12.8 shows examples from English into French (Rayner and Carter 1995). SLT
is limited to air travel information, but it is based on principles general enough to
envision an extension to any other domain.
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Table 12.8. Examples of French–English translations provided by the SLT. After Rayner and
Carter (1995).

English What is the earliest flight from Boston to Atlanta?
French Quel est le premier vol Boston–Atlanta?
English Show me the round trip tickets from Baltimore to Atlanta
French Indiquez-moi les billets aller-retour Baltimore–Atlanta
English I would like to go about 9 am
French Je voudrais aller aux environs de 9 heures
English Show me the fares for Eastern Airlines flight one forty seven
French Indiquez-moi les tarifs pour le vol Eastern Airlines cent quarante sept

12.10.2 Compositional Semantics

The CLE’s semantic component maps sentences onto logical forms. It uses unifica-
tion and compositionality as a fundamental computation mechanism. This technique
makes it easy to produce a representation while parsing and to generate the corre-
sponding sentence in the target language.

Agnäs et al. (1994, pp. 42–43) give an example of the linguistic analysis of the
sentence

I would like to book a late flight to Boston

whose semantic structure corresponds to the Prolog term:

would(like_to(i,
book(i,

np_pp(a(late(flight)),
X^to(X, boston)))))

The parse rule notation is close to that of DCGs, but instead of the rule

Head --> Body_1, Body_2, ..., Body_n.

CLE uses the equivalent Prolog term

rule(<RuleId>,
Head,
[Body_1,
Body_2,
...

Body_n])

Table 12.9 shows the rules involved to parse this sentence. For example, rule 1
describes the sentence structure and is equivalent to

s --> np, vp.
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Table 12.9. Rules in the CLE formalism. After Agnäs et al. (1994, p. 42).

# Rules
1 rule(s_np_vp,

s([sem=VP]),
[np([sem=NP,agr=Ag]),
vp([sem=VP,subjsem=NP,aspect=fin,agr=Ag])]).

2 rule(vp_v_np,
vp([sem=V,subjsem=Subj,aspect=Asp,agr=Ag]),
[v([sem=V,subjsem=Subj,aspect=Asp,agr=Ag,

subcat=[np([sem=NP])]]),
np([sem=NP,agr=_])]).

3 rule(vp_v_vp,
vp([sem=V,subjsem=Subj,aspect=Asp,agr=Ag]),
[v([sem=V,subjsem=Subj,aspect=Asp,agr=Ag,

subcat=[vp([sem=VP,subjsem=Subj])]]),
vp([sem=VP,subjsem=Subj,aspect=ini,agr=])]).

4 rule(vp_v_to_vp,
vp([sem=V,subjsem=Subj,aspect=Asp,agr=Ag]),
[v([sem=V,subjsem=Subj,aspect=Asp,agr=Ag,

subcat=[inf([]),vp([sem=VP,subjsem=Subj])]]),
inf([]),
vp([sem=VP,subjsem=Subj,aspect=inf,agr=])]).

5 rule(np_det_nbar,
np([sem=DET,agr=(3-Num)]),
[(det([sem=DET,nbarsem=NBAR,num=Num]),
nbar([sem=NBAR,num=Num])]).

6 rule(nbar_adj_nbar,
nbar([sem=ADJ,num=Num])
[adj([sem=ADJ,nbarsem=NBAR]),
nbar([sem=NBAR,num=Num])]).

7 rule(np_np_pp,
np([sem=np_pp(NP,PP),agr=Ag]),
[np([sem=NP,agr=Ag]),
pp([sem=PP])]).

8 rule(pp_prep_np,
pp([sem=PREP]),
[prep([sem=PREP,npsem=NP]),
np([sem=NP,agr=_])]).
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Rules embed variables with values under the form of pairs Feature = Value
to implement syntactic constraints and semantic composition.

The lexicon entries follow a similar principle and map words onto Prolog terms:

lex(<Wordform>, <Category> (Features>))

Table 12.10 shows lexical entries of the sentence I would like to book a late flight
to Boston, and Fig. 12.5. shows its parse tree

Table 12.10. Lexicon entries in the CLE formalism. After Agnäs et al. (1994, p. 42).

# Lexicon entries
1 lex(boston,np([sem=boston,agr=(3-s)])).
2 lex(i,np([sem,agr=(1-s)])).
3 lex(flight,n([sem=flight,num=s])).
4 lex(late,adj([sem=late(NBAR),nbarsem=NBAR])).
5 lex(a,det([sem=a(NBAR),nbarsem=NBAR,num=s])).
6 lex(to,prep([sem=Xˆto(X,NP),npsem=NP])).
7 lex(to,inf([])).
8 lex(book,v([sem=have(Subj,Obj),subjsem=Subj,aspect=ini,

agr=_,subcat=[np([sem=Obj])]])).
9 lex(would,v([sem=would(VP),subjsem=Subj,aspect=fin,

agr=_,subcat=[vp([sem=VP,aubjsem=Subj])]])).
10 lex(like,v([sem=like_to(Subj,VP),subjsem=Subj,aspect=ini,

agr=_,subcat=[inf([]),vp([sem=VP,subjsem=Subj])]])).

The semantic value of words or phrases is denoted with the sem constant in the
rules. For instance, flight has the semantic value flight (Table 12.10, line 3) and a
has the value a(NBAR) (Table 12.10, line 5), where NBAR is the semantic value of
the adjective/noun sequence following the determiner.

The parser composes the semantic value of the noun phrase a flight applying the
np_det_nbar rule (Table 12.9, line 5) equivalent to

np --> det, nbar.

in the DCG notation. It results in sem = a(flight).
All the semantic values are unified compositionally and concurrently with the

parse in an upward movement, yielding the sentence’s logical form.

12.10.3 Semantic Representation Transfer

The complete CLE’s semantic layer relies on two stages. The first one maps a sen-
tence onto a so-called quasi-logical form. Quasi-logical forms are basic predicate-
argument structures, as we saw in this chapter, where variables representing real ob-
jects remain uninstantiated. The second layer links these variables to values, taking
the context into account and so constructing fully resolved logical forms.
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S

NP V P

I V V P

would V INF V P

like to V NP

book NP PP

Det NBAR Prep NP

a Adj NBAR to Boston

late flight

Fig. 12.5. Parse tree for I would like to book a late flight to Boston. After Agnäs et al. (1994,
p. 43).

Translation from one language to another need not resolve variables. So the SLT
builds a quasi-logical form from the source sentence and transfers it into the target
language at the same representation level. SLT uses then a set of recursive transfer
rules to match patterns in the source sentence and to replace them with their equiva-
lent in the target language. Rules have the following format (Rayner et al. 1996):

trule(<Comment>
<QLF pattern 1>
<Operator>
<QLF pattern 2>).

where Operator describes whether the rule is applicable from source to target
(>=), the reverse (=<), or bidirectional (==).

Some rules are lexical, such as

trule([eng, fre],
flight1 >= vol1).

which states that flight is translated as vol, but not the reverse. Others involve syntac-
tic information such as:

trule([eng, fre],
form(tr(relation,nn),

tr(noun1),
tr(noun2))

>=
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[and, tr(noun2),
form(prep(tr(relation)),

tr(noun1))]).

which transfers English compound nouns like arrival time – noun1 noun2. These
nouns are rendered in French as: heure d’arrivée with a reversed noun order – noun2
noun1 and with a preposition in-between d’ – prep(tr(relation)).

12.11 Further Reading

Relations between logic and language have been a core concern for logicians, lin-
guists, and philosophers. For a brief presentation and a critical discussion on philo-
sophical issues, you may read Habermas (1988, Chap. 5). The reader can also find
good and readable introductions in Encyclopédie philosophique universelle (Jacob
1989) and in Morton (2003).

Modern logic settings stem from foundational works of Herbrand (1930) and
Tarski (1944). Later, Robinson (1965) proposed algorithms to implement logic pro-
grams. Robinson’s work eventually gave birth to Prolog (Colmerauer 1970, 1978).
Burke and Foxley (1996) provide a good introductory textbook on logic and notably
on Herbrand bases. Sterling and Shapiro (1994) also give some insights on relations
between Prolog and logic.

Some books attribute the compositionality principle to Frege (1892). In fact,
Frege said exactly the opposite. The investigation of rational ways to map sentences
onto logical formulas dates back to the ancient Greeks and the Middle Ages. Later,
Montague (1974) extended this work and developed it systematically to English.
Montague has had a considerable influence on modern developments of research in
this area. For a short history of compositionality, see Godart-Wendling et al. (1998).
The Handbook of Logic and Language (van Benthem and Ter Meulen (eds) 1997)
provides a comprehensive treatment on current theories in the field. A shorter and
very readable introduction on the philosophy of language is that of Taylor (1998).

Exercises

12.1. Write facts to represent
Tony is a hedgehog
A hedgehog likes caterpillars
Tony likes caterpillars
All hedgehogs likes caterpillars

12.2. Write DCG rules to get the semantic structure out of sentences of Exercise 12.1.

12.3. Write DCG rules to obtain the semantic representation of noun phrases made
of one noun and one and more adjectives such as The nice hedgehog, the nice little
hedgehog.
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12.4. Write rules accepting sentences with embedded relative clauses, such as The
waiter that ran brought a meal and producing a logical form out of them:
the(X, (waiter(X), ran(X)), a(Y, meal(Y), brought(X, Y))

12.5. Write rules to carry out the semantic interpretation of determiner two, as in the
sentence Two waiters rushed.

12.6. Write rules to carry out the semantic interpretation of determiner No, as in No
waiter rushed.

12.7. Write rules to carry out the semantic interpretation of how many, as in how
many waiters rushed.

12.8. Write rules to parse questions beginning with relative pronouns who and what
in sentences, such as Who brought the meal? and What did the waiter bring? and
build logical forms out of them.

12.9. Write a small dialogue system accepting assertions and questions and answer-
ing them. A transcript of a session could be:
User: the patron ordered the meal
System: OK
User: who brought the meal
System: I don’t know
User: who ordered the meal
System: the patron
User: the waiter brought the meal
System: OK
User: who brought the meal
System: the waiter

12.10. Some sentences such as all the patrons ordered a meal may have several read-
ings. Cite two possible interpretations of this sentence and elaborate on them.
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Lexical Semantics

13.1 Beyond Formal Semantics

13.1.1 La langue et la parole

Formal semantics provides clean grounds and well-mastered devices for bridging
language and logic. Although debated, the assumption of such a link is common
sense. There is obviously a connection – at least partial – between sentences and log-
ical representations. However, there are more controversial issues. For instance, can
the whole language be handled in terms of logical forms? Language practice, psy-
chology, or pragmatics are not taken into account. These areas pertain to cognition:
processes of symbolization, conceptualization, or understanding.

Bibliography on nonformal semantics is uncountable. Let us have a glimpse at
it with Ferdinand de Saussure (1916), the founder of modern linguistics. Much of
Saussure’s work, but not exclusively, was devoted to the area of what we would
call now real-world semantics. He first made the distinction between the cultural
background of a community of people of a same language embodied in words and
grammatical structures and physical messages of individuals expressed by the means
of a tongue. He called these two layers language and speech – la langue et la parole,
in his words.

13.1.2 Language and the Structure of the World

Starting from the crucial distinction between langue and parole, Saussure went on to
consider linguistic values of words, taking examples from various languages (1916,
Chap. 4). Comparing words to economic units, Saussure described them as structural
units tied together into a net of relationships. These units would have no sense iso-
lated, but taken together are the mediators between thought and the way individuals
express themselves. Accepting Saussure’s theory, languages are not only devices to
communicate with others but also to seize and understand reality. This entails that
the structure of knowledge and thought is deeply intermingled within a linguistic
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structure. And of course, to fit communication, this device has to be shared by a
community of people.

In this chapter, we will limit ourselves to some aspects on how a language and,
more specifically, words relate to the structure of the world. Words of a specific
tongue also embed a specific view of the universe. We believe that most concepts are
common to all languages and can be structured in the same way. However, certain
words cover concepts somewhat differently according to languages. In addition, the
ambiguity they introduce is puzzling since it rarely corresponds from one language
to another. We will present techniques to structure a lexicon and to resolve ambi-
guity. Within this framework, we will examine verb structures and case grammars
that will provide us with a way to loop back to sentence representation and to formal
semantics.

13.2 Lexical Structures

13.2.1 Some Basic Terms and Concepts

To organize words, we must first have a clear idea of what they express. In dictionar-
ies, this is given by definitions. Definitions are statements that explain the meaning
of words or phrases. Some words have nearly the same definition and hence nearly
the same meaning. They are said to be synonyms. In fact, perfect synonyms are rare
if they ever exist. We can relax the synonymy definition and restate it as: synonyms
are words that have the same meaning in a specific context. Synonymy is then rather
considered as a graded similarity of meaning. Antonyms are words with opposite
meanings.

Contrary to synonymy, a same word – or string of characters – may have several
meanings. It is then said to be ambiguous. Word ambiguity is commonly divided
between homonymy (or homography) and polysemy:

• When words of a same spelling have completely unrelated meanings, such as for
the strings lot in a lot of and a parking lot, they are said to be homonyms or
homographs.

• When a word extends its meaning from concrete to abstract and to concepts tied
by analogy, it is said to be polysemous. Consider the example of tools used in
computer tools and in carpenter tools, where the latter is a concrete object and
the former a computer program.

13.2.2 Ontological Organization

There are several ways to organize words within a lexicon. Most dictionaries for Eu-
ropean languages sort words alphabetically. An obvious advantage of this method is
to provide an easy access to words. However, alphabetical organization is of little
help when we want to process semantic properties. A more intuitive way is to or-
ganize words according to their meaning. The lexicon structure then corresponds to
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broad categories where we arrange and group the words. Such a classification cer-
tainly better reflects the structure of our knowledge of the world and is more adequate
for semantic processing.

A first classification dates back to ancient Greek philosophy when Aristotle es-
tablished his famous division of words into ten main categories (Fig. 13.1). Such a
lexicon structure, and beyond it, the representation of the world it entails, is often
called an ontology in computational linguistics.

Expressions, which are in no way composite, signify substance, quantity,
quality, relation, place, time, position, state, action, or affection. To sketch
my meaning roughly, examples of substance are “man” or “the horse”, of
quantity, such terms as “two cubits long” or “three cubits long”, of qual-
ity, such attributes as “white”, “grammatical”. “Double”, “half”, “greater”,
fall under the category of relation; “in the market place”, “in the Lyceum”,
under that of place; “yesterday”, “last year”, under that of time. “Lying”,
“sitting”, are terms indicating position, “shod”, “armed”, state; “to lance”,
“to cauterize”, action; “to be lanced”, “to be cauterized”, affection.

Aristotle, Categories, IV. (trans. E.M. Edghill)

substance quality staterelation actionpositionplace timequantity affection

expressions

Fig. 13.1. Aristotle’s ontology.

We can deepen the classification hierarchy. Aristotle’s substance is what we could
call now an entity. It includes man and horse as well as meal and table. It is easy to
introduce further divisions between these words. To refine them, we insert new nodes
under the substance class. Figure 13.2 shows a symbolic tree distinguishing between
animates, human beings, animals, food, and furniture. This tree representation – now
ubiquitous – is traditionally attributed to Porphyry.

13.2.3 Lexical Classes and Relations

An ontological structure defines classes and relationships relative to each word of the
lexicon. The most obvious way to group words within an ontological tree is to cut
a branch under a word. The branch contains then the hyponyms of that word: more
specific and specialized terms. For instance, hyponyms of animals are mammals,
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animates

human beings furniturefoodanimals

substance

Fig. 13.2. Extending Aristotle’s ontology.

carnivores, felines, or cats. We can go the reverse direction, from specific to more
general, and abstract heading to the root of the tree. Thus we get the hypernyms of a
word. Hypernyms of hedgehogs are insectivores, mammals, animals, and substance.

It is easy to express hypernymy and hyponymy using Prolog facts. Let us define
the is_a/2 predicate to connect two concepts. We can represent the hierarchy of
the previous paragraph as:

%% is_a(?Word, ?Hypernym)

is_a(hedgehog, insectivore).
is_a(cat, feline).
is_a(feline, carnivore).
is_a(insectivore, mammal).
is_a(carnivore, mammal).
is_a(mammal, animal).
is_a(animal, animate_being).

Hypernymy and hyponymy are reversed relationships and are both transitive.
This can trivially be expressed in Prolog:

hypernym(X, Y) :- is_a(X, Y).
hypernym(X, Y) :- is_a(X, Z), hypernym(Z, Y).

hyponym(X, Y) :- hypernym(X, Y).

Beyond the tree structure, we can enrich relationships and link parts to the whole.
Feet, legs, hands, arms, chest, and head are parts of human beings. This relation is
called meronymy. Meronymy is also transitive. That is, if nose, mouth, brain are
meronyms of head, they are also meronyms of human beings. Again it is easy to
encode this relation using Prolog facts. Let us use the has_a/2 predicate:

%% has_a(?Word, ?Meronym).

has_a(human_being, foot).



13.3 Building a Lexicon 347

has_a(human_being, leg).
has_a(human_being, hand).
has_a(human_being, arm).
has_a(human_being, chest).
has_a(human_being, head).
has_a(head, nose).
has_a(head, mouth).
has_a(head, brain).

The opposite of meronymy is called holonymy.

13.2.4 Semantic Networks

We can generalize the organization of words and knowledge and extend it to any
kind of relationships that may link two concepts. Words are figured as a set of nodes,
and relationships are labeled arcs that connect them. This representation is called a
semantic network (Quillian 1967).

Figure 13.3 shows an extension of Fig. 13.2 where we have added the relations
eat and possess. As we see, the graph contains two eat links: the first one between
carnivores and meat, and the second one between animates and food. Once a se-
mantic net has been designed, we search relations between two concepts, climbing
up from specific to general. Inheritance enables then to assign relations eat(X,
meat) to nodes X under carnivores, and eat(Y, food) to other nodes Y under
animates.

Inheritance makes the design of a semantic network easier, therefore the core
structure of the graph remains centered on hypernymy, that is “is a” links. Other
properties come as a supplement to it. There are then many ways to augment a net.
Design decisions depend on the application. The verbs linking words representing
the agent of an action and its object are among common and useful arcs.

13.3 Building a Lexicon

Dictionaries – or lexicons – are repositories of a language’s words. They are orga-
nized as a set of entries – the words – containing one or more senses. Current dic-
tionaries attempt to itemize all the senses of words and typically contain more than
50,000 entries. Others are focused on specific domains. Dictionaries associate words
or senses with grammatical models and definitions. Grammatical models such as the
part of speech or a verb’s conjugation class indicate morphological and syntactic
properties of words; this enables their lemmatization and parsing. Models can also
extend to semantic and pragmatic classifications. Many dictionaries cross-reference
words using synonyms and give usage examples to show how a word is used in con-
text.

As we could have guessed, wide-coverage lexical databases are central to most
natural language processing applications. Instead of creating a new base from scratch,
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possess
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carnivoresinsectivores

meatmammals
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animates

substance

human beings furniturefoodanimals

Fig. 13.3. A semantic network.

many computerized dictionaries have been derived from existing paper lexicons and
transcribed in a computer readable format, which are called machine-readable dic-
tionaries (MRDs). Computerized dictionaries often take the structure of their paper
counterparts and are organized as a set of entries corresponding to word senses with
their syntactical model, semantic annotations, and definition.

Learner or nonnative speaker dictionaries are often preferred as primary re-
sources to derive lexical databases. They describe precisely pronunciation and syn-
tactical features, such as a verb’s subcategory or an inflection paradigm, while other
dictionaries sometimes take it for granted by native speakers. Some dictionaries also
tie words to specialized domains with labels such as: anatomy, computer science,
linguistics, etc. or to general semantic codes: life, body, people, food, etc. Finally,
most learner’s dictionaries define each entry with a controlled vocabulary limited
to two to three thousand words. This ensures a consistency in definitions, ease of
understanding, and avoids circular – looping – definitions.

General lexicographic sources for English include the Longman Dictionary of
Contemporary English (LDOCE, Procter 1978), the Oxford Advanced Learner’s
Dictionary (OALD, Hornby 1995), the Collins Cobuild English Language Dictio-
nary (COBUILD, Sinclair 1987) or the Cambridge International Dictionary of En-
glish (CIDE, Procter 1995). Among them, the computerized version of the LDOCE
gained the largest popularity within the academic computational linguistics commu-
nity.
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13.3.1 The Lexicon and Word Senses

As we saw in Chap. 1, many words are ambiguous, that is, a same string of letters has
more than one meaning. Most dictionaries arrange homonyms that have clearly dif-
ferent meanings under different entries. The OALD, (1995 edition) lists three entries
for bank: two nouns, organization and raised ground, and a verb turn. Polysemy,
which refers to meaning variations within a same entry, is subtler. Dictionaries di-
vide entries into submeanings with more or less precision according to the dictionary.
These are the senses of a word. Let us take the example of the sentence

The patron ordered a meal

to realize concretely what word senses are. We will annotate each word of the sen-
tence with its correct sense, and we will use definitions of the OALD to carry out this
operation.

In the sentence, there are three content words: patron, order, and meal. For each
of these words, the OALD lists more than one sense. Patron has one main entry for
which the dictionary makes out two meanings:

1. a person who gives money or support to a person, an organization, a cause or an
activity

2. a customer of a shop, restaurant, theater

Order has two entries. The first one is a noun and the other is a verb for which
the OLAD details four sub-meanings:

1. to give an order to somebody
2. to request somebody to supply or make goods, etc.
3. to request somebody to bring food, drink, etc. in a hotel, restaurant, etc.
4. to put something in order

And finally, meal has two entries – two homographs – one as in oatmeal, and the
other being divided into two submeanings:

1. an occasion where food is eaten
2. the food eaten on such occasion

That is, with such a simple sentence, we already have 16 choices (2 × 4 × 2;
Table 13.1).

Classically, senses of a word are numbered relatively to a specific dictionary
using the entry number and then the sense number within the entry. So requesting
somebody to bring food, drink, etc. in a hotel, restaurant, etc., which is the 3rd sense
of the 2nd entry of order in the OALD is denoted order (2.3). The proper sense
sequence of The patron ordered a meal is then patron (1.2) order (2.3) meal (1.2).
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Table 13.1. Sense ambiguity in the sentence The patron ordered a meal.

Words Definitions OALD
sense
numbers

The patron Correct sense:
A customer of a shop, restaurant, theater 1.2
Alternate sense:
A person who gives money or support to a person, an organiza-
tion, a cause or an activity

1.1

ordered Correct sense:
To request somebody to bring food, drink, etc in a hotel,
restaurant etc.

2.3

Alternate senses:
To give an order to somebody 2.1
To request somebody to supply or make goods, etc. 2.2
To put something in order 2.4

a meal Correct sense:
The food eaten on such occasion 1.2
Alternate sense:
An occasion where food is eaten 1.1

13.3.2 Verb Models

Dictionaries contain information on words’ pronunciations, parts of speech, declen-
sion, and conjugation models. Some enrich their annotations with more precise syn-
tactic structures such as the verb construction. In effect, most verbs constrain their
subject, object, or adjuncts into a relatively rigid construction (Table 13.2).

Table 13.2. Some verb constructions.

English depend + on + object noun group
I like + verb-ing (gerund)
require + verb-ing (gerund)

French dépendre + de + object noun group
Ça me plaît de + infinitive
demander + de + infinitive

German hängen + von + dative noun group + ab
es gefällt mir + zu + infinitive
verlangen + accusative noun group

Some dictionaries such as the OALD or the LDOCE provide the reader with this
argument structure information. They include the traditional transitive and intransi-
tive verb distinction, but descriptions go further. The OALD itemized 28 different
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types of verb patterns. Intransitive verbs, for example, are subdivided into four cate-
gories:

• V are verbs used alone.
• Vpr are verbs followed by a prepositional phrase.
• Vadv are verbs followed by an adverb.
• Vp are verbs followed by a particle.

A verb entry contains one or more of these models to indicate possible constructions.
Some dictionaries refine verb patterns with semantic classes. They indicate pre-

cisely the ontological type of the subject, direct object, indirect object, and some-
times adjuncts. Verbs with different argument types will be mapped onto as many
lexical senses. For instance, Rich and Knight (1991) quote three kinds of wanting:

1. wanting something to happen
2. wanting an object
3. wanting a person

We can map the 2nd construction onto a DCG rule specifying it in its arguments:

%% word(+POS, +Construction, +Subject, +Object)

word(verb, transitive, persons, phys_objects) -->
[want].

Argument types enforce constraints, making sure that the subject is a person and
that the object is a physical object. These are called selectional restrictions. They
may help parsing by reducing syntactic ambiguity.

The LDOCE lists selectional restrictions of frequent verbs that give the expected
semantic type of their subject and objects. It uses semantic classes such as inanimate,
human, plant, vehicle, etc. The Collins Robert French–English dictionary (Atkins
1996) is another example of a dictionary that includes such ontological information
with a large coverage.

13.3.3 Definitions

The main function of dictionaries is to provide the user with definitions, that is, short
texts describing a word. The typical definition of a noun first classifies it in a genus
or superclass using a hypernym. Then, it describes in which way the noun is specific
using attributes to differentiate it from other members of the superclass. This part of
the definition is called the differentia specifica. Examples from the OALD include
(general in bold and specific underlined):

bank (1.1): a land sloping up along each side of a canal or a river.
hedgehog: a small animal with stiff spines covering its back.
waiter: a person employed to serve customers at their table in a restaurant, etc.

from Le Robert Micro (Rey 1988)
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bord (1.1): contour, limite, extrémité d’une surface.
hérisson (1.1): petit mammifère au corps recouvert de piquants, qui se nourrit
essentiellement d’insectes.
serveur (1.1): personne qui sert les clients dans un café, un restaurant.

and from Der kleine Wahrig (Wahrig 1978)

Ufer (1.1): Rand eines Gewässers, Gestade.
Igel (1.1): ein kleines insektfressendes Säugetier mit kurzgedrungenem Körper
und auf dem Rücken aufrichtbaren Stacheln.
Ober (1.2) –> Kellner: Angestellter in einer Gaststätte zum Bedienen der Gäste.

13.4 An Example of Exhaustive Lexical Organization: WordNet

WordNet (Miller 1995, Fellbaum 1998) is a lexical database of English. It is probably
the most successful attempt to organize word information with a computer. It has
served as a research model for other languages such as Dutch, German, Italian, or
Spanish. A key to this success is WordNet’s coverage – it contains more than 120,000
words – and its liberal availability online: users can download it under the form of
Prolog facts from its home at Princeton University.

WordNet arranges words or word forms along with word meanings into a lexical
matrix (Fig. 13.4). The lexical matrix addresses both synonymy and polysemy. A
horizontal line defines a set of synonymous words – a synset in WordNet’s parlance.
A column shows the different meanings of a word form. In Fig. 13.4, F1 and F2 are
synonyms (both have meaning M1) and F2 is polysemous (it has meanings M1 and
M2). Synsets are the core of WordNet. They represent concepts and knowledge that
they map onto words.

Word Word forms
meanings F1 F2 ... ... Fn

M1 E1,1 E1,2

M2 E2,2

Mm Em,n

Fig. 13.4. The lexical matrix (Miller et al. 1993).

From synonymy and synsets, WordNet sets other semantic relations between
words, taking their part of speech into account. WordNet creators found this prop-
erty relevant, citing cognitive investigations: when people have to associate words
spontaneously, they prefer consistently to group words with the same part of speech
rather than words that have a different one.

WordNet considers open class words: nouns, verbs, adjectives, and adverbs. It
has set aside function words. According to classes, the organization and relationships
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between words are somewhat different. However, semantic relations remain based on
synsets and thus are valid for any word of a synset.

13.4.1 Nouns

WordNet singles out twenty-five primitive concepts or semantic primes (Fig. 13.5),
and it partitions the noun set accordingly. Within each of the corresponding topics,
WordNet uses a hypernymic organization and arranges nouns under the form of a
hierarchical lexical tree. WordNet contains 95,000 nouns.

{act, action, activity}
{animal, fauna}
{artifact}
{attribute}
{body, corpus}
{cognition, knowledge}
{communication}
{event, happening}
{feeling, emotion}

{food}
{group, collection}
{location, place}
{motive}
{natural object}
{natural phenomenon}
{person, human being}
{plant, flora}

{possession}
{process}
{quantity, amount}
{relation}
{shape}
{state, condition}
{substance}
{time}

Fig. 13.5. WordNet’s 25 semantic primes.

In addition to the 25 base domains, WordNet adds top divisions (Fig. 13.6). This
enables it to gather some classes and to link them to a single node. Figure 13.7 shows
the hierarchy leading to {thing, entity}.

{entity, something} {state} {group, grouping}
{psychological feature} {event} {possession}
{abstraction} {act, human action, human activity} {phenomenon}

Fig. 13.6. Nouns’ top nodes.

To picture the word hierarchy and synsets with an example, let us take meal. It
has two senses in WordNet:

1. meal, repast – (the food served and eaten at one time)
2. meal – (coarsely ground foodstuff; especially seeds of various cereal grasses or

pulse)

For sense 1, synonyms are nutriment, nourishment, sustenance, aliment, alimen-
tation, and victuals; and hypernyms are (from the word up to the root):

• nutriment, nourishment, sustenance, aliment, alimentation, victuals – (a source
of nourishment)
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{thing, entity}

{living thing, organism}

{nonliving thing, object}

{plant, flora}

{animal, fauna}

{person, human being}

{natural object}

{artifact}

{substance}

{food}

Fig. 13.7. {thing, entity} node of WordNet’s hierarchy.

• food, nutrient – (any substance that can be metabolized by an organism to give
energy and build tissue)

• substance, matter – (that which has mass and occupies space; “an atom is the
smallest indivisible unit of matter”)

• object, physical object – (a physical (tangible and visible) entity; “it was full of
rackets, balls, and other objects”)

• entity, something – (anything having existence (living or nonliving))

13.4.2 Adjectives

WordNet divides adjectives into two general classes: descriptive and relational, and
into a more specific one: color adjectives. WordNet contains 20,000 adjectives.

Descriptive adjectives modify a noun and qualify one of its attributes. Examples
include hot and cold, as in hot meal and cold meal, where hot and cold both describe
the temperature attribute of meal. Another example is heavy and light, which give a
value to the weight attribute of a noun (more precisely to the object it represents). As
for other words, adjectives are grouped into synsets, and for each adjective synset,
there is a link to the attribute it describes.

In addition to synonymy, WordNet uses antonymy as a core concept to organize
descriptive adjectives. It clusters all of them around bipolar couples: word–antonym
together with their respective synsets. Hot and cold or wet and dry are typical couples
of antonyms, and WordNet enumerates 2,500 of them.

Antonymy relation, however, is not valid for all the members of a synset. Torrid
is a synonym of hot but it cannot be considered as an antonym of cold. To cope with
this, WordNet makes a distinction between bipolar antonymy and opposite concepts
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– or indirect antonyms. There is no direct antonym for torrid, but using its synset,
WordNet can link it indirectly to cold via hot.

Relational adjectives (pertainyms) such as fraternal, contextual, or dental are
modified nouns and behave much like them on the semantic side, although they have
the syntactic properties of adjectives. WordNet encodes them with a reference to
their related noun: fraternal with fraternity or brother, contextual with context, and
dental with teeth or dentistry. As opposed to descriptive adjectives, WordNet does
not associate them to an attribute.

13.4.3 Verbs

WordNet partitions verbs into 15 categories. Fourteen of these categories are seman-
tic domains: bodily functions and care, change, cognition, communication, competi-
tion, consumption, contact, creation, emotion, motion, perception, possession, social
interaction, and weather. A last part contains verbs referring to states: verbs of being,
having, and spatial relations (Table 13.3). WordNet has a total of 10,300 verbs.

Table 13.3. Name and description of verb files provided with the WordNet 1.6 distribution.

File Description
Body Verbs of grooming, dressing, and bodily care
Change Verbs of size, temperature change, intensifying, etc.
Cognition Verbs of thinking, judging, analyzing, doubting
Communication Verbs of telling, asking, ordering, singing
Competition Verbs of fighting and athletic activities
Consumption Verbs of eating and drinking
Contact Verbs of touching, hitting, tying, digging
Creation Verbs of sewing, baking, painting, performing
Emotion Verbs of feeling
Motion Verbs of walking, flying, swimming
Perception Verbs of seeing, hearing, feeling
Possession Verbs of buying, selling, owning
Social Verbs of political and social activities and events
Stative Verbs of being, having, spatial relations
Weather Verbs of raining, snowing, thawing, thundering

The first relation WordNet sets between verbs is synonymy, as for other words.
However, synonymy is more delicate to delimit because verb meanings are quite
sensitive to the context. That is, two verbs with apparently the same meaning, such
as rise and ascend, do not occur with the same type of subject. This is a general
case, and most verbs are selective with the type of their nominal arguments: subject,
object, or adjunct. Moreover, as a verb often has no lexical synonym, WordNet en-
codes synsets with a small explanation – a gloss. For example, the verb order has
nine senses whose sense 2 is represented by the synset {order, make a request for
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something}. Bring has 11 senses, and sense 1 is the synset {bring, convey, take, take
something or somebody with oneself somewhere}.

Then, WordNet organizes verbs according principles similar to hyponymy and
meronymy for nouns. However, it cannot apply these principles directly because
they do not match exactly that of nominals. WordNet replaces them respectively
with troponymy and entailment.

WordNet designers found the is_a relationship not relevant or clumsy for verbs
(Fellbaum 1998, p. 79):

to amble is a kind of to walk is not a felicitous sentence.

To name specializations of more generic verbs, they coined the word troponyms.
Amble is then a troponym of walk. This is roughly a kind of verbal hyponymy re-
lated to a manner, a cause, or an intensity that makes the description of an action
more precise. Since tropos is a Greek word for manner or fashion, it enables us to
rephrase the hierarchical relation between amble and walk as to amble is to walk in
a particular manner.

The second principle of verb organization is entailment – or implication – as he
is snoring implies he is sleeping, or she is limping implies she is walking. Relations
between verbs in these examples are not of the same kind. The latter is related to
troponymy: limping is a specialization or an extension of walking. The former is an
inclusion: the action of snoring is always included in an action of sleeping. In total,
WordNet makes out four kinds of entailments. In addition to extension and inclusion,
the two other entailments are backward presupposition – an action must have been
preceded by another one, as with the pair succeed/try – and cause – an action leads
to another one, as with give/have.

13.5 Automatic Word Sense Disambiguation

Although ambiguity is ubiquitous in texts, native speakers recognize the proper sense
of a word intuitively. In the beginning of computational linguistics, some people
declared it a human faculty impossible to reproduce automatically. This is no longer
the case. There have been considerable improvements recently, and researchers have
good reason to believe that a computer will be able to discriminate among word
senses. Here we will present an overview of techniques to carry out word sense
disambiguation, that, alone or combined, show promising results.

13.5.1 Senses as Tags

Let us again consider the sentence The patron ordered a meal. Solving ambiguity
has an obvious definition. It consists in linking a word with its correct sense entry
in a dictionary. We can recast this as a tagging problem. We regard a dictionary as
a sense inventory and senses as a finite set of labels that we call semantic tags. The
number of tags per word ranges from one to more than a dozen. Ambiguous words
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can receive several tags, and disambiguation consists in retaining one single tag –
a unique sense – per word. Semantic tagging applies most frequently to open class
words: nouns, verbs, adjectives, and adverbs.

Compared to part-of-speech tagging, a major contrast comes from the tagset.
Dictionaries have somewhat different classifications of word senses and there is
no complete consensus on them. According to authors, sense division is also finer
or coarser. Applications can even use sets of word senses specifically designed for
them. If broad categories of senses are common across most dictionaries and can be
transcoded, there always will be some cases with a lack of agreement. The dissimi-
larity in classification and how we perceive senses can be measured by asking two or
more different people to annotated a same text. The agreement between manual an-
notators – or interannotator agreement – is usually significantly lower for semantic
tagging than, say, for part-of-speech annotation. There is no definitive solution to it,
however. We must be aware of it and live with it.

We can carry out semantic tagging using techniques similar to those that we
have used with parts of speech. Namely, we can resort to numerical or symbolic
techniques. Numerical techniques attempt to optimize a sequence of semantic tags
using statistics from a hand-annotated corpus. Symbolic techniques apply constraints
to discard wrong semantic readings and retain the good ones.

SemCor (Landes et al. 1998) is a frequently used resource to train systems for
English. It comes as a freely available corpus in which all the words are annotated
with the WordNet nomenclature.

13.5.2 Associating a Word with a Context

The basic idea of most disambiguation techniques is to use the context of a word
(Wilks et al. 1996, Chap. 11). The noun bank, for example, has two major senses1

that will probably appear in clear-cut contexts. Sense one (bank1) resorts to finance
and money; sense 2 (bank2) pertains to riversides and sloping ground. Context may
be given by the words of the sentence or of the paragraph where the word occurs.
This means that, depending on the words surrounding bank or what the text is about,
a reader can select one of its two senses.

Some finer and more local relations such as the order of two words or the gram-
matical relations may also give the context. Disambiguating meal in The patron or-
dered a meal requires such considerations, because the two senses of this word be-
long to the same topic:

1. an occasion where food is eaten
2. the food eaten on such occasion

13.5.3 Guessing the Topic

The idea of this technique is first to define a limited number of topics, that is, a
list of general areas, to attach a topic to each sense of words, and then to guess the

1 OALD lists a third sense of bank as being a row of similar objects.
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topic (or topics) of a paragraph or of a sentence. This technique implies that correct
word senses will make the paragraph topic converge and enable us to discard senses
attached to other topics. To make disambiguation possible, topics must, of course, be
different along with each sense of a word.

According to applications, topics may come from dictionaries that flag some
words with broad classifications – subject tags. For instance, the LDCOE catego-
rizes words with 300 subject codes or domains that we can use as topics: agriculture,
business, economics, engineering, etc. These tags usually annotate more specialized
words.2 Topics could also be a small set of hypernyms drawn from a comprehensive
lexical database. For instance, using WordNet, bank1 could be attached to financial
institution (finance or institution) and bank2 to slope:

%% topic(?Word, ?OALD_Sense, ?Topic).

topic(bank, bank1, [finance, institution]).
topic(bank, bank2, [slope]).

The disambiguation algorithm operates on a context that corresponds to a se-
quence of words such as a paragraph, a fixed number of sentences, or a fixed number
of words, from 10 to 100, where the topic is supposed to be stable. A procedure anno-
tates the words in the window with the possible subject tags when they are available.
It yields possible sense sequences. The algorithm then retains the sense sequence that
has the maximum of subject tags in common. A variation of this algorithm annotates
nouns only. This method is referred to as a bag-of-words approach because it does
not take the word order into account.

13.5.4 Naïve Bayes

The naïve Bayes classifier is an alternate statistical strategy that uses the bag-of-
word approach. It also computes the sense of a word given its context. For a polyse-
mous word w with n senses s1, s2, . . . , sn, the context C is defined as the sequence
of words surrounding it: w−m, w−m+1, ..., w−1, w, w1, ..., wm−1, wm. The optimal
sense ŝ corresponds to argmax

si,1≤i≤n
P (si|C).

Using the Bayes rules, we have:

ŝ = argmax
si,1≤i≤n

P (si)P (C|si),

= argmax
si,1≤i≤n

P (si)P (w−m, w−m+1, ..., w−1, w1, ..., wm−1, wm|sj).

And using the bag-of-word assumption, we replace

P (w−m, w−m+1, ..., w−1, w1, ..., wm−1, wm|sj)

with the product of probabilities:

2 LDOCE annotates the rest of nonspecialized words with another set of semantic codes: the
key concepts.
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ŝ = arg max
si,1≤i≤n

P (sj)
m∏

i=−m,i�=0

P (wi|sj).

P (sj) and P (wi|sj) are both estimated from hand-annotated corpora.

13.5.5 Using Constraints on Verbs

As we saw, most verb arguments have a structure and a semantic type that is relatively
rigid. Another set of disambiguation techniques exploits these properties and takes
verb constructions and local relations into account. We start here from clauses, and
for each one we detect the verb group and noun groups. The idea is to apply the
selectional restrictions imposed by the verb group to its depending noun groups and
thus reject wrong senses.

This technique needs a group detector and a shallow parser to identify the verbs’
subject and object. The sense tagger operates on headwords, that is, here on the
main noun and the main verb of each group. The tagger goes through the verbs
that it annotates with their possible semantic constructions. It also annotates nouns
with their possible senses. Finally, for each verb sense, the tagger retains subject and
object senses that agree with the selectional restrictions.

Although this technique sets aside some parts of sentences, such as adjuncts,
it reduces ambiguity and can be used with a combination of other techniques. In
contrast to the previous technique, it has a more local viewpoint.

In addition, we can operate a disambiguation within groups using other selec-
tional restrictions on adjectives and adverbs. We need to extend the description of
adjectives with features giving the semantic type of the noun they expect to modify.
Adverbs also have to include their modifier type. As an example, the word mean can
have the properties of being an adjective and of qualifying only persons:

%% word(+Category, +Qualify)

word(adjective, persons) --> [mean].

13.5.6 Using Dictionary Definitions

We saw that using the naïve Bayes approach to tag senses in unrestricted texts re-
quires an immense hand-annotation effort. It is possible to avoid it using unsuper-
vised methods. Unsupervised methods have no training step or are trained on raw
texts. These techniques are very appealing, especially in word sense disambiguation,
because they avoid the need of human labor to annotate the words.

Wilks and Stevenson (1997) described an algorithm that only uses word defini-
tions from general dictionaries as semantic resource. Their method was inspired by
a paper by Lesk (1986).

The algorithm tags each word with all its possible senses listed in the dictionary
and links each sense with its definition in a dictionary. It first applies constraints on
parts of speech and then identifies the context using the definitions: it selects senses
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whose definitions overlap best within the range of a window of N words, a sentence,
or a paragraph. This is made easier with dictionaries, such as the LDOCE, whose
definitions are written using a controlled defining vocabulary. Simplified main steps
of the program are:

1. A name recognition module identifies the proper nouns of the text.
2. A lemmatization module transforms each word into its canonical form. It asso-

ciates each content word with its set of possible senses listed in the dictionary
and with the corresponding textual definitions. Words occurring in definitions
are also lemmatized.

3. A part-of-speech tagger annotates each word with its part of speech. At this step,
the program can discard some senses because they have grammatical categories
different from that of the words in the sentence.

4. The algorithm then computes the definition overlap for each sequence of possible
senses. The overlap function considers a sequence of senses and their textual
definition – one definition per word. The algorithm concatenates definitions of
this sequence and counts the occurrences of each definition word: n. Each defi-
nition word brings a score of n− 1. So, if a definition word appears once, it will
contribute nothing to the function; if it appears twice, it will contribute 1, and so
on. Then, the algorithm adds up the counts and associates this score to the sense
sequence.

5. The algorithm retains the sequence that has the maximum overlap, which is the
largest number of definition words in common.

Wilks and Stevenson (1997) improved this algorithm using topics as defined in
Sect. 13.5.3. Basically, they compute an overlap function for topics within the range
of a paragraph:

6. The algorithm annotates nouns of a paragraph with possible subject tags when
available. It retains the sequence that has the maximum of subject tags in com-
mon. This computation is similar to that of step 4.

7. The results of steps 4 and 6 are combined in a simplistic way. When both tags do
not correspond, the first one in the dictionary entry list is retained. This is based
on the assumption that entries are ordered by frequency of occurrence.

Step 4 of this algorithm can lead to very intensive computations. If a sentence
has 15 words with 6 senses each, it leads to 615 ∼ 4.7 1011 intersections. Wilks and
Stevenson used simulated annealing to approximate the function. See also Wilks et
al. (1996, Chap. 11).

13.5.7 An Unsupervised Algorithm to Tag Senses

Yarowsky (1995) proposed a slightly supervised and effective algorithm based on
two assumptions on sense distribution:

• Nearby words provide strong clues to the sense of a word. This means that a word
has one sense per collocation.
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• The sense of a word is consistent within any given document. This means that a
word has one sense per discourse.

The algorithm is basically a classifier. Given a polysemous word w with n senses
s1, s2, . . . , sn and a set of examples of the word surrounded by the neighboring
words, the algorithm assigns each example a class corresponding to one of the senses.
Each word in the examples is defined by a set of features, which are, as for naïve
Bayes, the surrounding words. The algorithm starts from a few manually annotated
examples that serve as a seed set to derive incrementally a sequence of classifiers for
the remaining unlabeled examples. It uses an objective function that measures the
performance of the classification. The algorithm is repeated until it has classified all
the examples.

The algorithm has an initialization step and two loops. It extracts the set of all the
examples of word w with the surrounding words from the training corpus. It results
in N contexts c1, . . . , cN of, say, ten words, centered around w. These examples
will be the input. In its original article, Yarowsky used the word plant and its two
main senses s1 = living and s2 = factory. The algorithm gradually annotates
all the examples of the corpus with one of the two senses. It produces a sequence
of annotated corpora Corpus(0), Corpus(1), . . . , Corpus(n) and builds classifiers
that correspond to the sets of collocations of the first sense, Collk1 , and of the second
one, Collk2 . Corpus(0) is the original, unannotated set of examples.

1. Initialization. This step manually identifies initial collocations, and the first
sense classifier tags the examples whose context contains one of the colloca-
tions with the corresponding sense label. Yarowsky used the words life for the
first sense, Coll11 = {life}, and manufacturing for the second one, Coll12 =
{manufacturing}. Both words enabled the disambiguation 2% of the exam-
ples in Corpus(1).

2. Outer Loop. This loop uses the “one sense per collocation” principle. It identi-
fies the examples where the intersection of the context and one of the collocation
sets is nonempty: ck∩Collji �= ∅ with 1 ≤ k ≤ N , i = 1, 2, and j is the iteration
index of the loop. It annotates the corresponding examples with the sense si. It
results in Corpus(j). In Yarowksy’s paper, contexts of plant that contained one
word of the first set were tagged with the first sense, and others that contained
one word of the second set were tagged with the second sense. The algorithm
applies optionally the “one sense per discourse” constraint.
• Inner Loop. The objective function determines for each sense other colloca-

tions that partition the training data Corpus(j) and ranks them by the purity
of the distribution. It builds new sets of classifiers Collj+1

i with colloca-
tions where the objective function is above a certain threshold. This step
identifies cell, microscopic, animal, and species as collocates of the first
sense Collj+1

1 = {life, cell, microscopic, animal, species} and equip-
ment, employee, and automate as collocates of the second sense: Collj+1

2 =
{manufacturing, equipment, employee, automate}.

3. Repeat the outer loop until it converges (the partition is stable).
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The algorithm identifies collocations with an objective function that determines
the “strongest feature.” It uses the log-likelihood ratio that is defined for a word
w with two senses as log P (Sense1|wk)

P (Sense2|wk) . It ranks the resulting values depending on
wk for all wk members of the contexts w−m, w−m+1, ..., w−1, w, w1, ..., wm−1, wm,
where the collocations the most strongly tied to a specific sense will show the largest
values, either positive or negative.

The “one sense per collocation” principle implies that counts of 0 are frequent.
In another paper, Yarowsky (1996) describes techniques to smooth data. Once the
collocation sets have been built, the resulting classifiers can be applied to other cor-
pora.

13.5.8 Senses and Languages

Word senses do not correspond in a straightforward way across languages. In a fa-
mous comparison, Hjelmslev (1943) exemplified it with the values of French words
arbre ‘tree’, bois ‘wood’, and forêt ‘forest’ and their mapping onto German and Dan-
ish scales (Table 13.4). He went on and remarked that the word covering the material
sense in French (bois) and in Danish (træ) could also have the plant sense but in
different ways: a group of trees in French, a single tree in Danish. In a more striking
example, Hjelmslev cited color naming that is roughly common to European lan-
guages with the exception of Celtic languages such as Welsh or Breton, which does
not makes the same distinction between blue and green (Table 13.5).

Table 13.4. Values of arbre, bois, and forêt in German and Danish.

French German Danish
arbre Baum

Holz Træ
bois
forêt Wald Skov

Table 13.5. Color values in French and Welsh.

French Welsh
gwyrdd

vert

bleu glas
gris

llwyd
brun
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There are many other examples where one word in English can be rendered by
more words in French or German, or the reverse. Finding the equivalent word from
one language to another often requires identifying its correct sense in both languages.
It is no great surprise that word sense disambiguation was attempted first within the
context of automatic machine translation projects.

This raises some questions about the proper granularity of sense division for a
translation application. In some cases, sense division that is available in monolingual
dictionaries is not sufficient and must be split within as many senses as there are in
both languages combined. In other cases, all senses of one word correspond from
one language to another. Therefore their distinction is not necessary and the senses
can be merged. This problem is still wide open and is beyond the scope of this book.

13.6 Case Grammars

13.6.1 Cases in Latin

Some languages, like Latin, Russian, and to a lesser extent German, indicate gram-
matical functions in a sentence by a set of inflections: the cases. Basically, Latin
cases are relative to the verb, and a case is assigned to each noun group: the noun
and its depending adjectives. Latin has six cases that we can roughly associate to a
semantic property:

• Nominative marks the subject of the sentence.
• Accusative indicates the object of the verb.
• Dative describes the beneficiary of a gift or of an action. It corresponds to the

indirect object of the verb.
• Genitive describes the possession. As opposed to other cases, it is relative to a

noun that the word in the genitive modifies or qualifies.
• Ablative describes the manner, the instrument, or the cause of an action. It cor-

responds to the adjunct function.
• Vocative is used to name and to address a god or a person.
• Locative is a seventh and an archaic case. It indicates the location of the speaker

in some particular expressions.

Latin, like Russian, has quite a flexible word order. That is, we can arrange words
of a sentence in different manners without modifying its meaning. The subject can
appear at the beginning as well as at the end of a sentence. It has no specific location
as in English or in French.

A flexible word order makes cases necessary for a sentence to be understandable.
They indicate functions of groups: who did what to whom, when, and where and
hence the arguments of a verb. Searching the subject, for example, corresponds to
searching the noun phrase at the nominative case. Let us apply these principles to
parse the following example:

Servus senatoris domino januam clave aperit
Slave senator master door key opens
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Aperit is the verb in the third-person singular of present and means open (aperire).
It is the predicate relative to which nouns will be the arguments. Each Latin noun has
a model of inflection, also called a declension, five in total. Servus follows the second
declension and means the slave. It is in the nominative case and hence the subject
of the sentence. Senatoris, third declension, is the genitive case of senator and is
the noun complement of servus. Domino, second declension, means master and is
the dative of dominus. It corresponds to the indirect object of the verb. Januam, first
declension, is the accusative of janua – door – and is the object. Finally, clave, third
declension, is the ablative of clavis – the key – and the instrument of the action. Once
we have identified cases, we can safely translate the sentence as:

The slave of the senator opens the door to the master with a key.

Cases are also useful to discover what goes with what such as an adjective and
its head noun. Both will have the same case even if the noun group is fragmented
within the sentence.

13.6.2 Cases and Thematic Roles

Case grammars stem from the idea that each verb – or each verb sense – has a finite
number of possible cases. Case grammars rest on syntactic and semantic observations
of languages like Latin and offer a framework to represent sentences. Hjelmslev
(1935), and more recently, Fillmore (1968) are known to have posited that cases
were universal and limited to a handful. Because of declensions, cases are obvious
to those who learned Latin. However, it is somewhat hidden to speakers of English
or French only. That is probably why, compared to compositionality, the acceptance
of the case theory and its transposition to English or French has been slower.

Surveying a set of languages ranging from Estonian to Walapai, Fillmore perco-
lated a dozen core cases, or thematic roles. A first classification led him to define
(Fillmore 1968, p. 24):

• Agentive (A) – the case of the instigator of the action, which is typically animate
• Instrumental (I) – the case of the force or object typically inanimate causing the

event
• Dative (D) – the case of the entity typically animate affected by the action
• Factitive (F) – the case of the object or being resulting from the event
• Locative (L) – the case of the identifying the place of the event or the orientation

of the action
• Objective (O) – the most general case indicating the entity that is acted upon or

that changes

As an example, Fillmore (1968, p. 27) attached to the verb open a frame contain-
ing an objective case that always occurs in the sentence, and optional instrumental
and agentive cases denoted in parentheses: [O, (I), (A)]. This frame enables us to
represent sentences in Table 13.6. One must note that the objective case, here filled
with the door, sometimes corresponds to the grammatical subject and sometimes to
the grammatical object.
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Table 13.6. Examples of case frames (Fillmore 1968, p. 27).

Sentences Case frames
The door opened [O = door, (I), (A)]
John opened the door [O = door, (I), (A) = John]
The wind opened the door [O = door, (I), (A) = wind]
John opened the door with a chisel [O = door, (I) = chisel, (A) = John]

To be complete and represent our Latin sentence, we add a dative case:

The slave of the senator opens the door to the master with a key.
[O = the door, (I) = a key, (A) = the slave of the senator, (D) = the master]

Later a multitude of authors proposed extensions to these cases. Most general
and useful are:

• Source – the place from which something moves
• Goal – the place to which something moves
• Beneficiary – the being, typically animate, on whose behalf the event occurred
• Time – the time at which the event occurred

Over the time, Fillmore himself slightly changed the structure and name of his
cases. Here is a more abstract classification of cases together with their description.

• Agent – primary animate energy source
• Experiencer – psychological locus of an experience
• Theme – primary moving object
• Patient – object which undergoes a change
• Source – starting point of a motion or change
• Goal – destination, target of a motion
• Location – location of an object or event
• Path – trajectory of a motion, between source and goal
• Content – content of an event of feeling, thinking, speaking, etc.

Some verbs do not fit into this case scheme, in spite of its generality. Fillmore
again cited some of them such as the verb set buy, sell, pay, spend, charge, etc.,
whose cases are the quadruplet buyer, seller, goods, money, and the set replace,
substitute, swap, etc., whose cases are old, new, position, causer. In addition, some
applications may require other more specific cases.

13.6.3 Parsing with Cases

Parsing with the case grammar formalism transforms a sentence – or a part of it
– into a kind of logical form: the frame. The predicate is the main verb, and its
arguments represent the cases (or the roles). The parsing process merely maps noun
groups or other features such as the tense or adverbs onto the cases. According to
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the verbs, some cases will be obligatory, such as the agent for most verbs. They will
be assigned with exactly one argument. Others cases will be optional. They will be
assigned with at most one value. In addition, cases are constrained by an ontological
type. Table 13.7. shows a representation of the sentence

The waiter brought the meal to the patron

which links noun groups and the verb tense to cases.

Table 13.7. Bring cases with constraints.

Case Type Value
Agentive Animate (Obligatory) The waiter
Objective (or theme) (Obligatory) the meal
Dative Animate (Optional) the patron
Time (Obligatory) past

We can relate verbs cases to Tesnière’s actants and circonstants (1966), which
are idiosyncratic patterns of verbs encapsulated into a predicate argument structure.
Tesnière first made a distinction between the typical cases of a verb – actants – and
its optional modifiers – circonstants. A verb attracts a definite number of actants cor-
responding to its valence. Drawing on the semantic side, cases fit well an ontology
of nouns and lead to subcategories of verb patterns. The agent, or the subject, of
verb eat is generally animate. The instrument of open should comply with the instru-
ment ontological subtree. These semantic properties related to verb cases are another
viewpoint on sectional restrictions.

13.6.4 Semantic Grammars

Originally, parsing with a case grammar was carried out using a combination of tech-
niques: shallow parsing and “expectations” on verb arguments. First, the parser de-
tects the verb group and its depending noun groups or noun phrases. Then, the parser
fills the cases according to “markers”: topological relations, ontological compatibil-
ity (selectional restrictions), prepositions, tense, and for German, syntactic cases.

In many circumstances, we can assimilate the Agent to the subject of a sentence
and the Theme to the object. Languages like English and French have a rather rigid
word order in a sentence, and functions correspond to a specific location relative to
a the verb. The subject is generally the first noun phrase; the object comes after the
verb. In German, they are inflected respectively with the nominative and accusative
cases.

Adjuncts are more mobile, and a combination of constraints on prepositions and
selectional restrictions can be productive to fill modifier cases such as Source, Goal,
and Instrument. Prepositions such as from, to, or into often indicate a Source and a
Goal. We can add a double-check and match them to location classes such as places,
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cities, countries, etc. Other prepositions are more ambiguous, such as by in English,
pour in French, and auf in German. Ontological categories come first as conditions
to carry out the parse. They enable us to attach noun groups to classes and to choose
a case complying with the selectional restrictions of the verb.

Phrase-structure rules can help us implement a limited system to process cases.
It suffices to replace parts of speech and phrase categories with ontological classes
in rules. This leads to semantic grammars dedicated to specific applications, such
as this one describing a piece of the real and gory life of animals:

sentence --> npInsectivores, ingest,
npCrawlingInsects.
npInsectivores --> det, insectivores.
npCrawlingInsects --> det, crawlingInsects.

insectivores --> [mole].
insectivores --> [hedgehog].
ingest --> [devoured].
ingest --> [ate].
crawlingInsects --> [worms].
crawlingInsects --> [caterpillars].
det --> [the].

Rules describe prototypic situations, and parsing checks the compatibility of the
types in the sentence. They produce a semantic parse tree.

Semantic grammars were once popular because they were easy to implement.
However, they are limited to one application. Changing context or simply modifying
it often requires a complete redesign of the rules.

13.7 Extending Case Grammars

13.7.1 FrameNet

The FrameNet research project started from Fillmore’s theory on case grammars
(1968). Reflecting on it, Fillmore noticed how difficult (impossible?) it was to work
out a small set of generic cases applicable to all the verbs. He then altered his orig-
inal ideas to form a new theory on frame semantics (Fillmore 1976). With frame
semantics, Fillmore no longer considers universal cases but a set of frames resem-
bling predicate-argument structures, where each frame is specific to a class of verbs.
Frames are supposed to represent prototypical conceptual structures shared by a lan-
guage community, i.e., here English.

FrameNet is a concrete outcome of the frame semantics theory. It aims at de-
scribing the frame properties of all the English verbs as well as some nouns and
adjectives, and at annotating them in a large corpus. Like WordNet, FrameNet takes
the shape of an extensive lexical database, which associates a word sense to a frame
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with a set frame elements (FEs). FrameNet also links the frames to annotations in
the 100-million word British National Corpus.

Ruppenhofer et al. (2005) list Revenge as an example of frame, which features
five frame elements: Avenger, Punishment, Offender, Injury, and Injured_party. The
Revenge frame serves as a semantic model to 15 lexical units, i.e., verb, noun, or
adjective senses:

avenge.v, avenger.n, get back (at).v, get_even.v, retaliate.v, retaliation.n, ret-
ribution.n, retributive.a, retributory.a, revenge.n, revenge.v, revengeful.a, re-
venger.n, vengeance.n, vengeful.a, and vindictive.a

where the .v suffix denotes a verb, .n a noun, and .a an adjective.
Once the frame was defined, the FrameNet team annotated the corresponding

lexical units in sentences extracted from its corpus. The annotation identifies one
lexical unit per sentence, which is the target, and brackets its frame elements as in
these examples from Ruppenhofer et al. (2005):

1. [<Avenger> His brothers] avenged [<Injured_party> him].
2. With this, [<Agent> El Cid] at once avenged [<Injury> the death of his son].
3. [<Avenger> Hook] tries to avenge [<Injured_party> himself] [<Offender> on

Peter Pan] [<Punishment> by becoming a second and better father].

Each frame element contains semantic and grammatical information split into
three levels of annotation. The first level is the name of the semantic role. The sec-
ond and third ones describe how a frame element is realized in the sentence: the
phrase syntactic category and its grammatical function. The phrase syntactic cate-
gory, i.e., noun phrases, prepositional phrases, and so on, is called the phrase type
(PT). FrameNet uses a small set of grammatical functions (GFs), which are specific
to the target’s part of speech (i.e., verbs, adjectives, prepositions, and nouns). For the
verbs, FrameNet defines four GFs: Subject, Object (Obj), Complement (Comp), and
Modifier (Mod), i.e., modifying adverbs ended by -ly or indicating manner. FrameNet
renames the subjects as external arguments (Ext).

Table 13.8 shows the three-level annotation of the sentences above. Altogether,
these levels form a valence group. Each sentence shows a valence pattern, a specific
set of valence groups.

13.7.2 A Statistical Method to Identify Semantic Roles

We saw that it was possible to develop a case parser using manually written rules.
However, such parsers require much labor, testing, and debugging, and have an
unavoidably limited coverage. We introduce now a statistical technique that uses
FrameNet to identify semantic roles for unrestricted text.

Gildea and Jurafsky’s (2002) algorithm takes a sequence of sentences as input
and consists conceptually of two steps. The first step segments the sentences to iden-
tify a target word and the constituents that will serve as frame elements. The second
step labels the frame elements with their semantic roles.
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Table 13.8. The valence patterns of avenge in the sentences above and their three levels of
annotations: frame element (FE), phrase type (PT), and grammatical function (GF).

Sent. 1 avenge FE Avenger Injured_party
PT NP NP
GF Ext Object

Sent. 2 avenge FE Agent Injury
PT NP NP
GF Ext Obj

Sent. 3 avenge FE Avenger Injured_party Offender Punishment
PT NP NP PP PPing
GF Ext Obj Comp Comp

We present here a simplified version of the algorithm where we first describe the
two-step procedure starting from the second step: the role identification of preseg-
mented constituents. We then outline the constituent segmentation that uses a similar
probability model. Finally, we merge the two steps into a single model that yields the
best results.

Two-Step Labeling. The algorithm is based on the observation that a semantic
role depends both on the phrase type and on its grammatical function, for instance,
noun phrase and agent, agent and subject. The idea is then to find a set of features
that expresses both dependencies. While the phrase type is accessible using a parser,
this is not the case for the grammatical function. Gildea and Jurafsky use a set of
three parameters to capture this function:

• The simplest one is the constituent position relative to the target, before or after.
This feature correlates the fact that in English, the subject is often before the
verb, while the object is after.

• The second feature is the constituent governor in the parse tree. The governor
is the highest node in the tree to go from the target to the constituent. It con-
cerns only noun phrases and has two possible values: sentence (S) or verb phrase
(V P ). A subject will have S as typical governor and an object V P , as shown in
Fig. 13.8.

• The third feature is the path from the target to the constituent. A typical object
path for a subject is V B ↑ V P ↑ S ↓ NP and V B ↑ V P ↓ NP for an object.
This feature is used in the boundary detection of the frame elements and not in
the role-labeling step.

We add three more features: the target, constituent headwords, and sentence
voice. We have seen with selectional restrictions that semantic roles in a sentence
depend on an interaction between the target and the frame elements. We express
these restrictions through the constituent headword. The voice value active/passive
also plays a role, because it inverts the subject/agent roles. Given the features we
have described, the resulting statistical model of role identification is then:
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The waiter the meal brought

Fig. 13.8. Paths from the target to the subject (solid lines) and object (dashed lines).

P (r|h, pt, gov, position, voice, t),

where r denotes the role; h, the headword; pt, the phrase type; gov, the governor;
position, the position of the constituent relative to the target; voice, the sentence
voice; and t, the target.

Using the maximum likelihood, we can estimate this value from an annotated
corpus:

PMLE(r|h, pt, gov, position, voice, t) =
C(r, h, pt, gov, position, voice, t)

C(h, pt, gov, position, voice, t)
.

In fact, due to sparse data, it is generally not possible to compute it. Gildea and
Jurafsky proposed workarounds that include linear interpolation and backoff. Both
show similar performance, and here is the formula they used for linear interpolation:

P (r|constituent) = λ1P (r|t) + λ2P (r|pt, t)
+λ3P (r|pt, gov, t) + λ4P (r|pt, position, voice)
+λ5P (r|pt, position, voice, t) + λ6P (r|h)
+λ7P (r|h, t) + λ8P (r|h, pt, t),

where
∑

i λi = 1.
The probability above does not identify the frame element boundaries. Gildea

and Jurafsky proposed a model to determine if a constituent is a frame element from
the path, the headword of the constituent, and the target word. The three last features
appear in the condition part of the probability. To handle sparse data, they used linear
interpolation:

P (fe|path, h, t) = λ1P (fe|path) + λ2P (fe|path, t) + λ3P (fe|h, t),

and set the threshold at 0.5.
Using the two-step procedure, boundary detection of frame elements and labeling

of semantic roles, Gildea and Jurafsky report a precision of 67 and a recall of 48.7.
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Combining Models. The valence patterns of a lexical unit, such as those shown
in Table 13.7 for avenge: {Avenger, Injured_party}, {Agent, Injury}, and {Avenger,
Injured_party, Offender, Punishment}, are not equally probable. Gildea and Jurafsky
used this observation to improve the role-labeling step of their system. The most
likely role assignment over a sentence of n constituents is modeled as

r∗ = arg max
r1...n

P (r1...n|t, f1...n),

where r∗ is the optimal role assignment over the n constituents of a sentence; t, the
target word; and fi, the constituent features. These features are the same as in the
first version of the role labeler.

Using Bayes’ theorem, we rewrite the equation as

r∗ = arg max
r1...n

P ({r1...n}|t)
∏

i

P (ri|fi, t)

P (ri|t) ,

where P ({r1...n}|t) is the probability of a valence pattern given a target word t.
Finally, Gildea and Jurafsky combined the two probability models from the frame

element segmenter and the improved role labeler into a single equation:

r∗ = arg max
r1...n

P ({r1...n}|t)
∏

i

P (ri|fi, fei, t)P (fei|fi)

P (ri|t) ,

where fei is a Boolean variable indicating whether sentence constituent i is a frame
element or not. P (fei|fi) is computed as in the first step of the previous method.
The combined equation yielded better results, with a precision of 64.6 and a recall of
61.2.

13.8 An Example of Case Grammar Application: EVAR

The EVAR application (Mast et al. 1994) is a spoken dialogue system that answers
inquiries about train connections in Germany. EVAR uses a dedicated ontology to
represent the domain and a case grammar to process the utterances. It is able to
process exchanges like the one in Table 13.9.

13.8.1 EVAR’s Ontology and Syntactic Classes

EVAR organizes nouns as a classical ontological tree restricted to the railway do-
main in Germany (Fig. 13.9). For instance, train is linked to “transport,” Hamburg
to “location,” etc.
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Table 13.9. A dialogue with the EVAR system.

Turn Utterance
EVAR Guten Tag. Hier ist die automatische Intercityauskunft.

‘Hello, this is the automatic Intercity information system.’
User Ich will nach Hamburg

‘I want to go to Hamburg’
EVAR Sie wollen nach Hamburg fahren?

‘You want to go to Hamburg’
Wo wollen sie abfahren?
‘Where do you want to start?’

User In Erlangen
EVAR Sie wollen von Erlangen abfahren?

‘You want to start from Erlangen’
An welchem Tag?
‘Which day?’

User Morgen früh
‘Tomorrow morning’

EVAR Sie wollen am Donnerstag den 26. Juni zwischen 6 und 12 Uhr fahren?
‘You want to travel on Thursday 26th of June between 6 and 12 AM’

User genau
‘Yes’

EVAR Ich habe mehrere Verbindungen gefunden. ‘I found connections’
Nach Hamburg HBF fahren sie ab Erlangen um 11 Uhr 1, Ankunft in
Hamburg HBF. . .
‘To Hamburg, you can start from Erlangen at 11.01, arrival in Ham-
burg...’
Soll ich die Verbindungen wiederholen?
‘Shall I repeat?’

User Nein Danke
EVAR Möchten Sie weitere Auskünfte?

‘Would you like more information?’
User Nein
EVAR Auf wiederhören

‘Good bye’

noun

concrete abstract

thing location animate worth classifying time

transport human beast

Fig. 13.9. Semantic classes in the EVAR application. After Mast et al. (1994).
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13.8.2 Cases in EVAR

EVAR uses a partial parser to detect syntactic groups, notably noun groups, preposi-
tional groups, infinitive groups, verb groups, and time and date expressions. It repre-
sents utterances with a case grammar tied to the train domain and uses the ontology
in Fig. 13.9. The case system is relatively detailed – it is said to be fine grained –
and consists of about 30 cases associated to verbs and also to nouns and adjectives.
Table 13.10 shows some examples of case frames together with their constraints.

Table 13.10. Some verbs and nouns with their cases in the EVAR system. After Mast et al.
(1994).

Word senses Examples and cases
Fahren1.1 Der Zug fährt von Hamburg nach München

‘The train is going from Hamburg to Munich’
Instrument: noun group (nominative), Transport, obligatory
Source: prepositional group (Origin), Location, optional
Goal: prepositional group (Direction), Location, optional

Fahren1.2 Ich fahre mit dem Zug von Hamburg nach München
‘I am going by train from Hamburg to Munich’
Agent: noun group (nominative), Animate, obligatory
Instrument: prepositional group (prep=mit), Transport, optional
Source: prepositional group (Origin), Location, optional
Goal: prepositional group (Direction), Location, optional

Abfahrt1.1 Die Abfahrt des Zuges von Hamburg nach München
‘The departure of the train at Hamburg for Munich’
Object: noun group (genitive), Transport, optional
Location: prepositional group (Place), Location, optional
Time: prepositional group (Moment), Time, optional

Verbindung1.5 Eine Verbindung von Hamburg nach München
‘A connection from Hamburg to Munich’
Source: prepositional group (Origin), Location, optional
Goal: prepositional group (Direction), Location, optional

Sagerer (1990) gives the full description of the semantic cases related to EVAR.

13.9 Further Reading

Although it may not serve for immediate applications, Saussure’s Cours de linguis-
tique générale (1916) offers a fundamental background introduction on links be-
tween language and though. Also of interest, is Hjelmslev’s Prolegomena to a Theory
of Language (1943), which provides a complement to Saussure’s views. A good in-
troduction to the classical texts is the historical presentation on linguistics by Harris
and Taylor (1997).
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Electric Words by Wilks et al. (1996) provides an account on semantics that fo-
cuses on computerized dictionaries. It contains many mistakes however. Boguraev
and Pustejovsky (1996) have similar concerns but address more specific points of
lexical acquisition. Mel’cuk et al. (1995) propose a detailed dictionary model for
French. Fellbaum (1998) gives an in-depth description of WordNet and its design.
The WordNet lexical database is regularly updated and its content is available for
download from http://wordnet.princeton.edu. Pustejovsky (1995) presents an alter-
nate viewpoint on lexical structure. Dutoit (1992) describes another model that gov-
erned the implementation of Dicologique, a lexical database in French of size com-
parable to WordNet.

Literature on word sense disambiguation is countless. The reader can find a start-
ing point in a dedicated special issue of Computational Linguistics, especially in its
Introduction (Ide and Véronis 1998), which lists more than 300 references! Word
sense disambiguation has made considerable progress recently. The SENSEVAL
workshops benchmark competing systems for a variety of languages. Proceedings
are available from the ACL Anthology (http://www.aclweb.org/anthology).

In a classical text, Fillmore (1968) gives the rationale behind case grammars.
Jackendoff (1990) gives another detailed description of cases for English. Later, Fill-
more started the FrameNet project that itemizes the frame elements of all the verbs.
Although it is an ongoing project, the FrameNet database is well underway. Its de-
scription and content is available for download from http://framenet.icsi.berkeley.edu.
Propbank or Proposition bank is a similar project aimed at annotating the Penn Tree-
bank with semantic data (Kingsbury et al. 2002).

Automatic role labeling using statistical techniques has received considerable in-
terest recently and was the theme of two conferences on Computational Natural Lan-
guage Learning (CoNLL-2004 and CoNLL-2005). Annotated data, descriptions, and
performance of the competing systems are available from the conference Web pages
(http://www.cnts.ua.ac.be/conll2004/ and http://www.cnts.ua.ac.be/conll2005/).

Exercises

13.1. Implement the complete semantic net of Fig. 13.3.

13.2. Implement a graph search that finds entities linked by properties using inheri-
tance, and test it using the eat/2 relation.

13.3. Annotate each word of the following sentences with their possible senses:
The waiter brought the starter to the customers.
Le serveur a apporté l’entrée aux clients
Der Ober hat die Vorspeise zum Kunden gebracht.
You may use any dictionary.

13.4. Write verb syntactical models corresponding to senses of order in Table 13.1.

13.5. Write selectional restrictions corresponding to senses of order in Table 13.1.
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13.6. Take a dozen or so words and, using their definition, build the corresponding
ontological tree.

13.7. According to WordNet, bring entails come, come up (move toward, travel to-
ward something or somebody or approach something or somebody). Classify this
type of entailment as coextensiveness, proper inclusion, backward presupposition,
or cause.

13.8. In this exercise, you will implement the word sense disambiguation algorithm
outlined in Sect. 13.5.3.

• Write a Prolog program that produces all sense sequences of a given sentence.
Implement the lexical database representing possible senses of patron, ordered,
and meal, and test the program with The patron ordered the meal.

• Find topics associated with senses of words patron, order, and meal. Set these
topics under the form of Prolog facts.

• Write a Prolog program that collects all the topics associated with a sense se-
quence.

• What is the main condition for the algorithm to produce good results?

13.9. Disambiguate by hand the senses of words in the sentence: the patron ordered
the meal using word definitions and the algorithm of Sect. 13.5.6. You may use any
dictionary.

13.10. Program the algorithm of the Exercise 13.9.



14

Discourse

14.1 Introduction

The grammatical concepts we have seen so far apply mostly to isolated words,
phrases, or sentences. Texts and conversations, either full or partial, are out of their
scope. Yet to us, human readers, writers, and speakers, language goes beyond the
simple sentence. It is now time to describe models and processing techniques to deal
with a succession of sentences. Although analyzing texts or conversations often re-
quires syntactic and semantic treatments, it goes further. In this chapter, we shall
make an excursion to the discourse side, that is, paragraphs, texts, and documents. In
the next chapter, we shall consider dialogue, that is, a spoken or written interaction
between a user and a machine.

Most basically, a discourse is made of referring expressions, i.e., words or
phrases that refer to real – or possibly imaginary – things: the discourse entities
or discourse referents. A first objective of discourse processing techniques is then
to identify and track sets of referring expressions – phrases or words – along with
sentences and to relate them to entities – real-world objects.

A discourse normally links the entities together to address topics, issues through-
out the sentences, paragraphs, chapters such as, for instance, the quality of food in
restaurants, the life of hedgehogs and toads, and so on. At a local level, i.e., within a
single sentence, grammatical functions such as the subject, the verb, and the object
provide a model of relations between entities. A model of discourse should extend
and elaborate relations that apply not to an isolated sentence but to a sequence and
hence to the entities that this sequence of sentences covers.

Models of discourse structures are still a subject of controversy. As for semantics,
discourse has spurred many theories, and it seems relatively far off to produce a
synthesis of them. In consequence, we will merely adopt a bottom-up and pragmatic
approach. We will start from what can be a shallow-level processing of discourse and
application examples; we will then introduce theories, namely centering, rhetoric,
and temporal organization, which provide hints for a discourse structure.



378 14 Discourse

14.2 Discourse: A Minimalist Definition

14.2.1 A Description of Discourse

Intuitively what defines a discourse, and what differentiates it from unstructured
pieces of text, is its coherence. A discourse is a set of more or less explicit topics
addressed in a sequence of sentences: what the discourse is about at a given time.
Of course, there can be digressions, parentheses, interruptions, etc., but these are
understood as exceptions in the flow of a normal discourse. Distinctive qualities of
a discourse are clarity, expressiveness, or articulation, which all relate to the ease
of identification of discourse topics and their logical treatment. Discourse coherence
ideally takes the shape of a succession of stable subjects (or contexts) that are chained
rationally along with the flow of sentences.

More formally, we describe a discourse as a sequence of utterances or segments,
S1, S2, S3, ..., Sn, so that each of these segments is mapped onto a stationary context.
Segments are related to sentences, but they are not equivalent. A segment can span
one or more sentences, and conversely a sentence can also contain several segments.
Segments can be produced by a unique source, which is the case in most texts, or by
more interacting participants, in the case of a dialogue.

14.2.2 Discourse Entities

Discourse entities – or discourse referents – are the real, abstract, or imaginary ob-
jects introduced by the discourse. Usually they are not directly accessible to a lan-
guage processing system because it would require sensors to “see” or “feel” them.
In a language like Prolog, discourse entities are represented as a set of facts stored in
a database. Referring expressions are mentions of the discourse entities along with
the text. Table 14.1 shows entities and references of sentences adapted from Suri and
McCoy (1994):

1. Susan drives a Ferrari
2. She drives too fast
3. Lyn races her on weekends
4. She often beats her
5. She wins a lot of trophies

Table 14.1. Discourse entities and referring expressions.

Referring expressions Discourse entities
(or referents)

Logic properties

Susan, she, her ’Susan’ ’Susan’
Lyn, she ’Lyn’ ’Lyn’
A Ferrari X ferrari(X)
A lot of trophies E E ⊂ {X, trophy(X)}
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Discourse entities are normally stable – constant – over a segment, and we can
use them to delimit a segment’s boundaries. That is, once we have identified the
entities, we can delimit the segment boundaries. Let us come back to our example.
There are two sets of relatively stable entities that we can relate to two segments. The
first one is about Susan and her car. It consists of sentences 1 and 2. The second one
is about Susan and Lyn, and it extends from 3 to 6 (Table 14.2).

Table 14.2. Context segmentation.

Contexts Sentences Entities
C1 1. Susan drives a Ferrari Susan, Ferrari

2. She drives too fast
C2 3. Lyn races her on weekends Lyn, Susan, trophies

4. She often beats her
5. She wins a lot of trophies

14.3 References: An Application-Oriented View

As a starting point of discourse processing, we will focus on referring expressions,
i.e., words or phrases that correspond to the discourse entities. This treatment can
be done fairly independently without any comprehensive treatment of the text. In
addition, the identification of discourse entities is interesting in itself and has an
industrial significance in applications such as information extraction.

In this section, we will take examples from the Message Understanding Confer-
ences (MUCs) that we already saw in Chap. 9. We will learn how to track the entities
along with sentences and detect sets of phrases or words that refer to the same thing
in a sentence, a paragraph, or a text.

14.3.1 References and Noun Phrases

In MUC, information extraction consists in converting a text under the form of a file
card. Cards are predefined templates whose entries are formatted tabular slots that
represent the information to be extracted: persons, events, or things. For each text,
information extraction systems have to generate a corresponding card whose slots
are filled with the appropriate entities.

Detecting – generating – the entities is a fundamental step of information extrac-
tion; a system could not fill the templates properly otherwise. To carry it out, the
basic idea is that references to real-world objects are equivalent to noun groups or
noun phrases of the text. So detecting the entities comes down to recognizing the
nominal expressions.

To realize in concrete terms what it means, let us take an example from Hobbs
et al. (1997) and identify the entities. We just have to bracket the noun groups and to
assign them with a number that we increment with each new group:
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[entity1 Garcia Alvarado], 56, was killed when [entity2 a bomb] placed by
[entity3 urban guerrillas] on [entity4 his vehicle] exploded as [entity5 it]
came to [entity6 a halt] at [entity7 an intersection] in [entity8 downtown]
[entity9 San Salvador].

We have detected nine nominal expressions and hence nine candidates to be ref-
erences that we represent in Table 14.3.

Table 14.3. References in the sentence: Garcia Alvarado, 56, was killed when a bomb placed
by urban guerrillas on his vehicle exploded as it came to a halt at an intersection in downtown
San Salvador.

Entities Noun groups
Entity 1 Garcia Alvarado
Entity 2 a bomb
Entity 3 urban guerrillas
Entity 4 his vehicle
Entity 5 it
Entity 6 a halt
Entity 7 an intersection
Entity 8 downtown
Entity 9 San Salvador

Typical discourse analyzers integrate modules into an architecture that they ap-
ply on each sentence. Depending on applications, they use a full-fledged parser or
a combination of part-of-speech tagger, group detector, semantic role identifier, or
ontological classifier. Here, we could have easily created these entities automatically
with the help of a noun group detector. A few lines more of Prolog to our noun group
detector (Chap. 9) would have numbered and added each noun group to an entity
database.

14.3.2 Finding Names – Proper Nouns

In unrestricted texts, in addition to common nouns, many references correspond to
names (or proper nouns). Their detection is then central to a proper reference pro-
cessing. Names include:

• Persons: Mrs. Smith, François Arouet, Dottore Graziani, Wolfgang A. Mozart,
H.C. Andersen, Sammy Davis, Jr.

• Companies or organizations: IBM Corp., Fiat SpA, BT Limited, Banque National
de Paris, Siemens GMBH, United Nations, Nations unies

• Countries, nations, or provinces: England, France, Deutchland, Romagna, Vlan-
deren

• Cities or geographical places: Paris, The Hague, Berlin, le Mont Blanc, la Città
del Vaticano, the English Channel, la Manche, der Rhein
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Name recognition frequently uses a dedicated database and the help of some
heuristics. Such name databases can sometimes be downloaded from the Internet.
However, for many applications, they have to be compiled manually or bought from
specialized companies. A name recognition system can then be implemented with
local DCG rules and a word spotting program (see Chap. 9).

However, name databases are rarely complete or up-to-date. Peoples’ names par-
ticularly are tricky and may sometimes be confused with common names. The same
can be said of names of companies, which are created every day, and those of coun-
tries, which appear and disappear with revolutions and wars. If we admit that there
will be names missing in the database, we have to design the word spotter to cope
with it and to implement some rules to guess them.

Guessing a person’s name is often done through titles and capitalization. A few
rules of thumb attempt to match:

• A first name, a possible initial, and a surname that is two strings of characters
with a capitalized first letter followed by lower case letters:
Robert Merryhill, Brigitte Joyard, Max Hübnisch
A possible enhancement is to try to match the first string to common first names.

• A title, possible first names or initials and a surname where common titles have
to be itemized:
Sir Robert Merryhill, Dr. B. K. Joyard, Herr Hübnisch

• A person’s name and a suffix:
R. Merryhill Sr., Louis XXII, Herr Hübnisch d. med.

These heuristics can be implemented with a word spotter and DCG rules to match
titles and first names. A short piece of Prolog code will also have to test the case of
certain characters. We can also use regular expressions or a stochastic classifer.

14.4 Coreference

14.4.1 Anaphora

In the example of the previous section, we have numbered eight objects correspond-
ing to noun groups and one corresponding to the pronoun it. Such a pronoun is gen-
erally related to a previous expression in the text and depends on this expression to
be interpreted. Here, the reader can easily guess that it and the noun group his vehicle
designate the same entity. This means that entities 5 and 4 in Table 14.3 are equal
and that nominal expressions his vehicle and it corefer to a same thing (Fig. 14.1).

The pair of expressions his vehicle and it form an anaphora where the first refer-
ence to the object – his vehicle – is the antecedent and subsequent references – here
it – are anaphors. Antecedent and anaphors are then a set of references to a same
entity in a text. The antecedent acts as the semantic source of the set and enables the
understanding of the anaphors (Tesnière 1966).

Third-person and relative pronouns (he/she/it/who) are typical examples of ana-
phors. In addition to them, anaphora uses demonstrative pronouns such as this/that
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on his vehicle exploded as it came to a halt

Fig. 14.1. Coreferencing an entity with a noun group and a pronoun.

in He did that, or location adverbs such as here/there in He was there. Demonstrative
pronouns (or adjectives) can be used as determiners as in this vehicle. The possessive
pronouns (or adjectives) are similar and also denote an anaphora as his in his vehicle
that is tied to the vehicle’s possessor.

While normally anaphors have their antecedent before they occur, there are some-
times examples of forward references or cataphora. For example, in the sentence:

I just wanted to touch it, this stupid animal.

It refers to the stupid animal. It has been shown that in most structured discourses,
cataphoras occur in the same sentence. However, this is not always the case, and
sometimes the referent is never mentioned, either because it is obvious given the
context, because it is unknown, or for some other reasons:

They have stolen my bicycle.

14.4.2 Solving Coreferences in an Example

Although we had no difficulty recognizing the identity of the two expressions, his
vehicle and it in the example above, coreference resolution is not as straightforward
as it may appear at a first sight. Let us come back to our example in Table 14.3 to
show this, and let us make our method explicit to outline an algorithm. We will first
admit that coreferences of a pronoun are always located before the pronoun occurs in
the text. Then, in the example, in addition to his vehicle (entity 4), pronoun it (entity
5) has four possible candidates: it could be Garcia Alvarado (entity 1), a bomb (entity
2), or urban guerrillas (entity 3).

We can rule out entities 1 and 3 from the coreference set because they do not
match the pronoun’s number or gender. If entity 5 had been Garcia Alvarado – a man
– the pronoun would have been he, and if it had been urban guerrillas – a plural – the
pronoun would have been they. The noun group A bomb is more difficult to discard.
We do not retain it because of a semantic incompatibility. Selectional restrictions of
the verb came likely require that its subject is a vehicle or a person.

We saw examples of anaphora where a same entity is specified by a noun and
a pronoun. Pairs of references can also consist of nouns or noun groups. They can
simply be a repetition of identical expressions, (the vehicle, the vehicle). Sometimes
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there might be a different determiner, a different denomination, synonyms, or aliases
to refer to a same thing. For instance, in an economic wire, we can first have Bay-
erische Motoren Werke, then BMW, and finally the German automaker.

Coreference is a far-reaching concept that can prove very complex. The definition
of anaphora may also vary: most authors restrain anaphors to be pronouns and certain
types of adverbs. Others extend it to noun phrases, either definite or not. In the rest
of the text, we will make no distinction, and we will define coreference resolution
or coreference recognition as the retrieval of sets of references to identical entities in
a text – what we have just come to do. We will also keep the terms antecedent and
anaphor to refer to the first and second term of a coreferring pair, even if the anaphor
is not a pronoun.

14.4.3 A Standard Coreference Annotation

Before we explain general methods to solve coreferences, let us first examine an
annotation scheme proposed in the sixth and seventh Message Understanding Con-
ferences (MUC-6 and MUC-7) to tag them. While there are various mark-up models,
this one, based on XML tags, is widely public and can be considered as a standard.
In addition, as the MUC’s final objective is to extract information, these tags have an
application interest.

The annotation of references and coreferences in a text consists first of identi-
fying of the referring expressions and then assigning a unique label to expressions
referring to a same entity. Hirschman and Chinchor (1997) proposed to annotate
nominal expressions, that is nouns, noun phrases, and pronouns, here considered as
referring expressions, and their antecedents, with the XML-defined COREF element.
COREF has five possible attributes: ID, REF, TYPE, MIN, and STAT.

ID is an arbitrary integer that assigns a unique number to each nominal expres-
sion of the text. REF is an optional integer that links a nominal expression to a core-
ferring antecedent. REF value is then the ID of its antecedent. From Hirschman and
Chinchor’s annotated examples, the text

<COREF ID="100">Lawson Mardon Group Ltd.</COREF> said <COREF
ID="101" TYPE="IDENT" REF="100">it</COREF>

indicates that Lawson Mardon Group Ltd. and it are assigned respectively with ID
100 and 101, and that it refers to the same entity as Lawson Mardon Group Ltd
through REF="100".

In the MUC competitions, coreference is defined as symmetric and transitive, that
is, if A is coreferential with B, the reverse is also true. And if A is coreferential with
B, and B is coreferential with C, then A is coreferential with C. Such a coreference
set then forms an equivalence class called a coreference chain. This is stated with
the TYPE attribute that specifies the link between the anaphor and its antecedent:
"IDENT" is the only possible value of the attribute, and it indicates that coreferences
are identical. One may imagine other types of coreference such as part, subset, etc.

Other attributes are MIN and STAT. Some denominations may have a variable
length and yet refer to the same entity, such as Queen Elisabeth of England and
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Queen Elisabeth. In a text where the denomination appears in full, a coreference
analyzer could bracket both. TheCOREF tag MIN indicates the minimum valid string.
From Hirschman and Chinchor’s guidelines,

<COREF ID="100" MIN="Haden MacLellan PLC">Haden MacLel-
lan PLC of Surrey, England</COREF> ... <COREF ID="101" TYPE=
"IDENT" REF="100">Haden MacLellan</COREF>

indicates that Haden MacLellan PLC of Surrey, England and Haden MacLellan PLC
are both valid bracketing.

Finally, STAT (“status”) means that the annotation is optional. It is used when
coreference is tricky or doubtful. The only value for this attribute is OPT (“optional”).
From Hirschman and Chinchor’s guidelines,

<COREF ID="102" MIN="Board of Education">Our Board of
Education</COREF> budget is just too high, the Mayor said. <COREF
ID="103" STAT="OPT" TYPE="IDENT" REF="102">Livingston
Street </COREF> has lost control.

indicates that Board of Education and Livingston Street refers to the same entity, but
that it can bewilder the reader and the annotation is left optional.

14.5 References: A More Formal View

14.5.1 Generating Discourse Entities: The Existential Quantifier

In Chap. 12, we introduced a logical notation to represent nominal expressions that
differs from that of the previous section. If we take the formal semantics viewpoint,
a sentence such as:

A patron ordered a meal.

exposes two new terms: a patron and a meal. These entities are tied to indefinite
noun phrases and hence to logical forms headed by the existential quantifier ∃:

∃x, patron(x)
∃y, meal(y)

A discourse interpretation program should reflect them in a Prolog database and
augment the database with the corresponding semantic facts:

patron(patron#3).
meal(meal#15).

We generate the entities by creating new constants – new atoms – making sure
that they have a unique name, here patron#3 or meal#15. Then, we can add them
in the database under the form of facts using the asserta/1 built-in predicate.

New entities are only a part of the whole logical set because the complete seman-
tic representation of the sentence is:
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a(X, patron(X), a(Y, meal(Y), ordered(X, Y)))

To be consistent with this representation, we must also add the predicate
ordered(Subject, Object) to link the two new entities. We carry this out
by asserting a last fact:

ordered(patron#3, meal#15).

14.5.2 Retrieving Discourse Entities: Definite Descriptions

While indefinite noun phrases introduce new entities, definite ones usually refer to
entities created previously. A possible subsequent sentence in the discourse could be:

The patron ate the meal,

which should not create new entities. This simply declares that the patron already
mentioned ate the meal he ordered. Such definite noun phrases are then anaphors.

The logic interpretation of definite descriptions usually translates as:

∃!x, patron(x)
∃!y, meal(y)

where properties are quantified with ∃! meaning that x and y are unique. To reflect
this in the Prolog database, we could identify x and y among the entities previously
created and then assert the new fact:

ate(patron#3, meal#15).

An alternate processing of the ate/2 relation – and probably a more alert one –
is to first create new atoms, that is, new names:

patron(patron#5).
meal(meal#17).

to link them with ate/2:

ate(patron#5, meal#17).

and to assert later that some names are identical:

equals(patron#3, patron#5).
equals(meal#15, meal#17).

This method is precisely the coreference recognition that we described previ-
ously. Besides, proceeding in two steps enables a division of work. While a first task
generates all potential entities, a second one resolves coreferences using techniques
that we will review in Sect. 14.7.
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14.5.3 Generating Discourse Entities: The Universal Quantifier

We saw that determiners can also correspond to the universal quantifier ∀. An exam-
ple of such a sentence is:

Every patron ordered a meal.

Its corresponding logic representation is:

∀x, patron(x) ⇒ ∃y, meal(y), ordered(x, y)

or in a predicate form:

all(X, patron(X), a(Y, meal(Y), ordered(X, Y)))

In such a logical form, each value of X should be mapped onto a specific value
of Y: each patron has eaten his/her own and unique meal. A definition in extension
of this sentence – that is, the list of all the facts it encompasses – could be:

Pierre ordered a cassoulet,
Charlotte ordered a pytt i panna, and
Dave ordered a Yorkshire pudding.

Doing so, we have defined a function linking each value of X with a unique value
of Y, that is, Pierre with a specific cassoulet, Charlotte with a pytt i panna, and Dave
with a Yorkshire pudding. In logic, this is called a Skolem function (Table 14.4).

Table 14.4. A Skolem function.

X Y Skolem function values
pierre cassoulet#2 f(pierre) = cassoulet#2
charlotte pytt_i_panna#4 f(charlotte) = pytt_i_panna#4
dave yorkshire_pudding#4 f(dave) = yorkshire_pudding#4

Our Skolem function has eliminated variable y and the existential quantifier. It
has replaced them by f(x) in the logical form:

∀x, patron(x) ⇒ ordered(x, f(x))

or

all(X, patron(X), a(f(X), meal(f(X)),
ordered(X, f(X))))

More generally, Skolemization handles logical formulas with universally quanti-
fied variables, x1, x2, ..., xn, and a variable existentially quantified y on its left-hand
side:

∀x1, ∀x2, ...,∀xn, ∃y, pred(x1, x2, ..., xn, y)
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It substitutes y by a function of the universally quantified variables:

y = f(x1, x2, ..., xn)

yielding unique values for each n-tuplet (x1, x2, ..., xn).
Skolemization results in a new formula, where variable y has disappeared:

∀x1, ∀x2, ...,∀xn, pred(x1, x2, ..., xn, f(x1, x2, ..., xn))

and where f(x1, x2, ..., xn) is called a Skolem function.

14.6 Centering: A Theory on Discourse Structure

Of the many theories on discourse structure, Grosz and Sidner’s (1986) has been very
influential in the computational linguistics community. Grosz and Sidner modeled a
discourse as being a composite of three components:

• the linguistic structure of the actual sequence of utterances in the discourse
• a structure of intentions
• an attentional state

Grosz and Sidner’s first assumption is that the linguistic structure of a discourse is
made of segments. They substantiated this claim using psychological studies show-
ing a relative agreement among individuals over the segmentation a text: given a text,
individuals tend to fractionate it in a same way. Segments have a nonstrict embedded
(hierarchical) organization (Fig. 14.2). It is roughly comparable to that of the phrase
structure decomposition of a sentence. Segment boundaries are often delimited by
clues and cue phrases, also called markers, that indicate transitions.

Segment 0
Segment 1

Susan drives a Ferrari
She drives too fast

Segment 2
Lyn races her on weekends
She often beats her
She wins a lot of trophies

Fig. 14.2. The embedded structure of discourse. Segment 0 covers the five sentences and spans
segment 1 (1 and 2) and segment 2 (3–5).

The intentional structure is what underlies a discourse. It is the key to how seg-
ments are arranged and their internal coherence. It has global and local components.
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From a global viewpoint, intention relates to the discourse purpose, which is the
main objective of the discourse and why it takes place. Within each segment there is
a discourse segment purpose that is local and that contributes to the main purpose.
Discourse segment purposes are often easier to determine than the overall discourse
intention.

The attentional state is the dynamic set of objects, relations, and properties along
with the discourse. The attentional state is closely related to segments. For each
of them there is a focus space made of salient entities, properties of entities, and
relations between entities, that is, predicates describing or linking the entities. The
attentional state also contains the discourse segment purpose.

While Grosz and Sidner’s general model may prove difficult to implement, Grosz
et al. (1995) derived a simpler concept of centering from it. Centering retains the
idea of segment, defined as a set of utterances, along which a limited number of
dynamic centers turn up. Centers are the “useful” entities of an utterance that link it
to other utterances of a segment. Since centers are a subset of entities, they are easier
to detect than the intention or the whole attentional state. They provide a tentative
model to explain discourse coherence and coreference organization.

Centers of an utterance are split into a set of forward-looking centers and
a unique backward-looking center, except for the first utterance of the segment,
which has no backward-looking center:

• The backward-looking center, or simply the center, is the entity that connects
the current utterance with the previous one and hence with one of the previous
forward-looking centers. It is often a pronoun.

• Forward-looking centers are roughly the other discourse entities of a segment.
More precisely, they are limited to entities serving to link the utterance to other
utterances.

Forward-looking centers can be ordered according to syntactic, semantic, and
pragmatic factors, and the first one has great chances to become the backward-
looking center of the next utterance. As examples, centers in Table 14.1 are:

• In sentence 1, Susan and Ferrari are the discourse entities and forward-looking
centers.

• In sentence 2, she is the backward-looking center because it connects the utter-
ance with the previous one.

• In sentence 3, Lyn and weekends are the forward-looking centers; her is the
backward-looking center.

14.7 Solving Coreferences

Although coreferences to a same object are frequently ambiguous, they generally
raise no understanding problem to a human reader, with the exception of poorly
written texts. However, they represent a tricky issue for a machine. The field has long
been dominated by complex linguistic theories that are difficult to implement and to
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process. Fortunately, as with partial parsing, the MUCs have focused research on
concrete problems and robust algorithms that revolutionized coreference resolution.

In the next sections, we will describe algorithms to automatically resolve coref-
erences. We will first introduce systems based on manually written rules and then
describe an efficient machine-learning approach. Even if coreference algorithms do
not reach the performance of POS taggers or noun group detectors, they have greatly
improved recently and can now be applied to unrestricted texts.

14.7.1 A Simplistic Method: Using Syntactic and Semantic Compatibility

A basic rule that links an anaphor and its antecedent is that their number and gen-
der are identical. This yields the idea of a simplistic method to resolve anaphoric
pronouns. The algorithm first collects a list of all the discourse’s referents. When an
anaphor occurs, the antecedent is searched backward in this list. We set aside cat-
aphoras here. The resolution retains the first antecedent it finds in the list – the most
recent one – that agrees in gender and number.

This method may seem naïve, but in fact, most of the time the first antecedent
occurring in the sentence or in the previous one with matching gender and number
is the good one. This recency principle has been observed in many experimental
studies. The methods ranks properly potential antecedents of it in the sentence:

Garcia Alvarado, 56, was killed when a bomb placed by urban guerrillas

on his vehicle exploded as it came to a halt at an intersection in

downtown San Salvador
1

2

We can extend this resolution method to find antecedents of definite noun
phrases. The recency principle remains the same, but in addition to syntactic features
such as gender and number, we add semantic constraints. We search the antecedent
of a definite noun phrase, considered as an anaphor, among the entities semantically
compatible. Compatibility takes the form of:

• the identity – identical noun groups indicate a same reference
• a direct ontological link between groups – generalization or specialization as in

a car and the vehicle, or
• compatible modifiers – adjectives and complements as in car, white car or police

car, but not in police car and ambulance

Huls et al. (1995) report that such a method identifies pronoun anaphor coref-
erences with an accuracy of 95%. Although this figure would probably degrade in
some cases, it proves the power and effectiveness of this very simple model. The
existence of gender for nouns in French and in German makes the search probably
more accurate in these languages.
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14.7.2 Solving Coreferences with Shallow Grammatical Information

Kameyama (1997) proposed an algorithm using manually written rules that produced
good results in the MUC contest for the coreference resolution task. Here is a slightly
modified version of his algorithm. It operates on pronouns and definite noun groups
only. It sets aside others such as indefinite and possessive noun groups.

The algorithm first extracts all nominal expressions of the text. Then, it scans
these expressions in left-to-right order, and for each pronoun or definite noun group,
it collects preceding nominal expressions – the potential antecedents – within a def-
inite span of a couple of sentences. The exact window size depends on the type of
referring expression:

• The entire MUC text preceding the current expression for proper names.
• Narrower for definite noun phrases. Kameyama suggests 10 sentences.
• Even narrower for pronouns. Again, Kameyama suggests 3 sentences.
• The current sentence for reflexive pronouns.

The algorithm applies constraints on the collected nominal expressions to check
the compatibility between the current entity E and possible antecedents:

• Number and gender consistency: both must coincide. In some cases, such as with
organizations, plural pronouns may denote a singular antecedent.

• Ontological consistency: type of E must be equal to the type of the antecedent
or subsume it. For instance, the automaker is a valid antecedent of the company,
but not the reverse.

• Modifier consistency: modifiers such as adjectives must not contradict such as in
the British company and the French company.

Then, among possible candidates, the algorithm retains the one whose salience
is the highest. This salience is based on the prominence of certain elements in a sen-
tence, such as subjects over objects, and on obliteration with time (or recency). It
has its origin in a rough model of human memory. Memory tends to privilege recent
facts or some rhetoric or syntactic forms. A linear ordering of candidates approxi-
mates salience in English because subjects have a relatively rigid location in front of
the sentence. Kameyama’s salience ranks candidates from:

1. the preceding part of the same sentence in left–right order (subject salience)
2. the immediately preceding sentence in left–right order (subject salience)
3. other preceding sentences within the window in right–left order (recency)

In addition, the algorithm improves the name recognition with aliases. Compa-
nies are often designated by full names, partial names, and acronyms to avoid rep-
etitions. For example, consider Digital Equipment Corporation, Digital, DEC. An
improvement to coreference recognition is to identify full names with substrings of
them and their acronyms.
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14.7.3 Salience in a Multimodal Context

EDWARD (Huls et al. 1995) is a model that extends salience to a gesture designa-
tion of entities. EDWARD is part of a system that is intended to control a graphical
user interface made of windows containing icons that represent files. The interface
accepts natural language and mouse commands to designate objects, that is, to name
them and to point at them. This combination of modes of interaction is called multi-
modality.

The multimodal salience model keeps the idea of recency in language. The sub-
ject of the sentence is also supposed to be retained better than its object, and an
object better than an adjunct. In addition, the model integrates a graphical salience
and a possible interaction. It takes into account the visibility of entities and pointing
gestures. Syntactic properties of an entity are called linguistic context factors, and vi-
sual ones are called perceptual context factors. All factors: subject, object, visibility,
interaction, and so on, are given a numerical value. A pointed object has the highest
possible mark.

The model uses a time sliding window that spans a sentence. It creates the dis-
course entities of the current window and assigns them a weight corresponding to
their contextual importance. Computation of an entity’s weight simply sums up all
the factors attached to it. An entity salience is then mapped onto a number: its weight.
Then the window is moved to the next sentence, and each factor weight attached to
each entity is decremented by one. An entity mentioned for the first time and in
the position of an object has a context factor weight – a salience – of 3. The next
sentence, its worth will be 2, then 1, and finally 0 (Table 14.5).

The model sequentially processes the noun phrases of a sentence. To determine
coreferring expressions of the current noun phrase, the model selects all entities se-
mantically compatible with it that have been mentioned before. The one that has the
highest salience value among them is retained as a coreference. Both salience values
are then added: the factor brought by the current phrase and the accumulated salience
of its coreference. All entities are assigned a value that is used to interpret the next
sentence. Then, the decay algorithm is applied and the window is moved to the next
sentence.

Table 14.6 shows a processing example. It indicates the salience values of Lyn,
Susan, and Ferrari. In case of ambiguous reference, the system would ask the user
to indicate which candidate is the right one.

14.7.4 Using a Machine-Learning Technique to Resolve Coreferences

Algorithms we have seen so far are based on manually engineered rules. This strat-
egy requires a good deal of expertise and considerable clerical work to test and debug
the rules. In this section, we introduce a machine learning approach where the coref-
erence solver uses rules obtained automatically from a hand-annotated corpus (Soon
et al. 2001).

The coreference solver is a decision tree. It considers pairs of noun phrases
(NPi, NPj), where each pair is represented by a feature vector of 12 parameters.
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Table 14.5. Context factors (simplified) according to Huls et al. (1995). Note that a subject
appears twice in the context factor list, as a subject and as a major constituent.

Context factors (CF) Objects in Scope Successive weights
Linguistic CFs
Major-constituent
referents CF

Referents of subject, (in)direct object, and
modifier

[3, 2, 1, 0]

Subject referent CF Referent of the subject phrase [2, 1, 0]
Nested-term referent CF Referents of the noun phrase modifiers

(e.g., prepositional phrase, relative clause)
[1, 0]

Perceptual CFs
Visible referent CF Referents visible in the current viewpoint.

Typically icons visible in a window
[1, . . . , 1, 0]

Selected referent CF Referents selected in the model world.
Typically icons selected – highlighted –
with the mouse or by a natural language
command

[2, . . . , 2, 0]

Indicated referent CF Referents indicated by a pointing gesture.
Typically an icon currently being pointed
at with a mouse

[30, 1, 0]

Table 14.6. Computation of the salience value (SV) of Lyn, Susan, and Ferrari.

SV of Susan SV of Lyn SV of Ferrari
Initial values 0 0 0
Susan drives a Ferrari 3 + 2 = 5 0 3

major + subject major
Decay after completion 3 − 1 + 2 − 1 = 3 3 − 1 = 2

She drives too fast 3 + 3 + 2 = 8
existing + major + sub-
ject

0 2

Decay after completion 3− 1− 1 + 2− 1− 1 +
3 − 1 + 2 − 1 = 4

3 − 1 − 1 = 1

Lyn races her on week-
ends

4 + 3 = 7
existing + major

3 + 2 = 5
major + subject

1

Decay after completion 3− 1− 1− 1 + 3− 1−
1+2−1−1+3−1 = 3

3−1+2−1 = 3 3 − 1 − 1 − 1 = 0

She often beats her 3 + 3 + 2 = 8
existing + major + sub-
ject

3 + 3 = 6
existing + major

0
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The solver first extracts pairs of noun phrases and computes feature vectors for each
pair. It then takes the set of NP pairs as input and decides for each pair whether it
corefers or not. Using the transitivity property, it identifies all the coreference chains
in the text.

The ID3 learning algorithm (Quinlan 1986) automatically induces the decision
tree from annotated texts using the MUC annotation standard (Sect. 14.4.3).

Noun Phrase Extraction. The engine first identifies all the noun phrases – the
coreference candidates – from a text using a pipeline of language processing mod-
ules. The pipeline is similar to what we have seen in information extraction: tokeniza-
tion, morphological processing, POS tagging, noun phrase identification, named en-
tity recognition, nested noun phrase extraction, and semantic class determination
(Fig. 14.3).

MorphologyText Tokenizer POS tagging Noun phrases

Named entities Nested NPs Semantic classes Noun phrases 

Fig. 14.3. A cascade of NL modules.

The four first modules are generic to many language processing applications.
The named entities module follows the MUC style and extracts organization, person,
location, date, time, money, and percent entities. When a noun phrase and a named
entity overlap, they are merged to form a single noun phrase. The Nested NPs module
splits some noun phrases and is more specific to coreference resolution:

1. It brackets possessive noun phrases and possessive pronouns, as in his long-term
strategy, to form two phrases, his and his long-term strategy.

2. It also brackets modifier nouns in nominal compounds, as in wage reductions, to
generate two noun phrases, wage and wage reduction.

Features. As input, the coreference engine takes a pair of extracted noun phrases
(NPi, NPj), where NPi is before NPj in the text. The engine considers NPi as a
potential antecedent and NPj as an anaphor and classifies the pair as positive if both
NPs corefer, or negative if they do not. Each pair is described by a feature vector
of 12 parameters that correspond to positional, grammatical, semantic, and lexical
properties:

• Positional feature:
1. Distance (DIST): This feature is the distance between the two noun phrases

measured in sentences: 0, 1, 2, 3, . . . The distance is 0 when the noun phrases
are in the same sentence.
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• Grammatical features:
2. i-Pronoun (I_PRONOUN): Is NPi a pronoun i.e. personal, reflexive, or pos-

sessive pronoun? Possible values are true or false.
3. j-Pronoun (J_PRONOUN): Is NPj a pronoun? Possible values are true or

false.
4. Definite noun phrase (DEF_NP): Is NPj a definite noun phrase, i.e., that starts

with the? Possible values are true or false.
5. Demonstrative noun phrase (DEM_NP): Is NPj a demonstrative noun phrase,

i.e., that starts with this, that, these, those? Possible values are true or false.
6. Number agreement (NUMBER): Do NPi and NPj agree in number? Possi-

ble values are true or false.
7. Gender agreement (GENDER): Do NPi and NPj agree in gender? Possible

values are true, false, or unknown.
8. Both proper nouns (PROPER_NOUN): Are NPi and NPj both proper nouns?

Proper nouns are determined using capitalization. Possible values are true or
false.

9. Appositive (APPOSITIVE): Is NPj an apposition to NPi, as the chairman of
Microsoft in Bill Gates, the chairman of Microsoft, . . .

• Semantic features:
10. Semantic class agreement (SEMCLASS): Do NPi and NPj have the same

semantic class? Possible values are true, false, or unknown. Classes are orga-
nized as a small ontology with two main parts, person and object, themselves
divided respectively into male and female, and organization, location, date,
time, money, and percent. The head nouns of the NPs are linked to this on-
tology using the WordNet hierarchy.

11. Alias (ALIAS): Are NPi and NPj aliases, for instance, IBM and Interna-
tional Business Machines? Possible values are true or false.

• Lexical feature:
12. String match (STR_MATCH): Are NPi and NPj equal after removing arti-

cles and demonstratives from both noun phrases? Possible values are true or
false.

Figure 14.3 shows an example of feature vector for the pair Frank Newman and
vice chairman excerpted from the next sentence (Soon et al. 2001):

Separately, Clinton transition official said that Frank Newman, 50, vice
chairman and chief financial officer of BankAmerica Corp., is expected to
be nominated as assistant Treasury secretary for domestic finance.

Training Examples. The classifier is a decision tree. It is trained from positive
and negative examples extracted from the annotated corpus using the ID3 algorithm:

• The training procedure generates the positive examples using pairs of adja-
cent coreferring noun phrases. If NPa1 – NPa2 – NPa3 – NPa4 is a corefer-
ence chain in a text, the positive examples correspond to pairs: (NPa1, NPa2),
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Table 14.7. Feature vector of the noun phrase pair: NPi = Frank Newman and NPj = vice
chairman. After Soon et al. (2001).

Feature type Feature Value Comments
Positional DIST 0 NPi and NPj are the same sentence
Grammatical I_PRONOUN – NPi is not a pronoun

J_PRONOUN – NPj is not a pronoun
DEF_NP – NPj is not a definite NP
DEM_NP – NPj is not a demonstrative NP
NUMBER + NPi and NPj are both singular
GENDER 1 NPi and NPj are both males (false = 0, true

= 1, unknown = 2)
PROPER_NOUN – Only NPi is a proper noun
APPOSITIVE + NPj is not an apposition to NPi

Semantic SEMCLASS 1 NPi and NPj are both persons (false = 0,
true = 1, unknown = 2)

ALIAS – NPj is not an alias of NPi

Lexical STR_MATCH – NPi and NPj do not match

(NPa2, NPa3), (NPa3, NPa4), where the first noun phrase is always considered
to be the antecedent and the second one the anaphor.

• To create the negative examples, the training procedure considers the same adja-
cent pairs antecedent, anaphor (NPi, NPj), and the noun phrases intervening be-
tween them NPi+1, NPi+2, ..., NPj−1. For each positive pair (NPi, NPj), the
training procedure generates negative pairs, which consist of one intervening NP
and the anaphor NPj : (NPi+1, NPj), (NPi+2, NPj), . . . , and (NPj−1, NPj).
The intervening noun phrases can either be part of another coreference chain or
not.

Extracting the Coreference Chains. Once the classifier has been trained, it is ap-
plied to the noun phrases in a text to identify the coreference chains. The engine first
extracts all the noun phrases in the text. It traverses the text from left to right from
the second noun phrase. For each current NPj , the algorithm considers every NPi

before it as a possible antecedent. It then proceeds from right to left and submits the
pairs (NPi, NPj) to the classifier until it reaches an antecedent or the start of the
text.

The algorithm is as follows:

1. Let NP1, NP2, ..., NPN be the noun phrases.
2. For j = 2 to N .

a) For each NPj , generate all the pairs (NPi, NPj), where i < j.
b) Compute the feature vector of each pair (NPi, NPj).
c) For i = j − 1 to 1, submit the pair (NPi, NPj) to the classifier until a

positive pair is found or the beginning of the text is reached.
d) If a noun phrase returns positive, NPj has an antecedent and is part of the

corresponding coreference chain.
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14.7.5 More Complex Phenomena: Ellipses

An ellipsis is the absence of certain words or phrases normally necessary to build a
sentence. Ellipses occur frequently in the discourse to avoid tedious repetitions. For
instance, the sequence:

I want to have information on caterpillars. And also on hedgehogs.

features a second sentence whose subject and verb are missing. The complete sen-
tence would be:

I want to have information on hedgehogs.

Here the speaker avoids saying twice the same thing. Ellipses also occur with
clauses linked by conjunctions where a phrase or a word is omitted as in the sentence:

I saw a hedgehog walking on the grass and another sleeping,

Everyone, however, can understand that it substitutes the complete sentence:

I saw a hedgehog walking on the grass and I saw another hedgehog sleep-
ing.

Ellipses are rather difficult to handle. In many cases, however, maintaining a
history of all the discourse’s referents can help retrieve an omitted referent or verb. A
referent missing in a sentence can be searched backward in the history and replaced
with an adequate previous one.

14.8 Discourse and Rhetoric

Rhetoric also offers means to explain discourse coherence. Although rhetoric has a
very long tradition dating from ancient times, modern linguists have tended to neglect
it, favoring other models or methods. Recently however, interest has again increased.
Modern rhetorical studies offer new grounds to describe and explain argumentation.
Modeling argumentation complements parts of human discourse that cannot only be
explained in terms of formal logic or arbitrary beliefs. The Traité de l’argumentation
by Perelman and Olbrechts-Tyteca (1976) is a prominent example of this trend.

On a parallel road, computational linguistics also rediscovered rhetoric. Most of
the renaissance in this community is due to influential papers on rhetorical structure
theory (RST) by Mann and Thompson (1987, 1988). This section provides a short
introduction to ancient rhetoric and then describes RST.
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14.8.1 Ancient Rhetoric: An Outline

Rhetoric was studied in most schools of ancient Greece and Rome, and in univer-
sities in the Middle Ages. Rhetoric was then viewed as a way to define how best
to compose ideas in a discourse, to make it attractive, to convince and persuade an
audience. It was considered as a kind of discourse strategy defining the optimal ar-
rangement or planning of arguments according to the type of audience, of speech
case, etc.

According to the ancient rhetoric school, the production of discourse had to be
organized around five canons – invention, arrangement, style, memory, and delivery.

• Invention (inventio) is related to the ideas or facts contained in a discourse: what
to say or to write are the first things to identify to make a discourse exist. Ac-
cording to ancient Greeks, a key to invention was to answer the right questions
in the right order.

• Arrangement (dispositio) is the discourse construction for which general patterns
have been proposed. According to Cicero, a discourse should feature an introduc-
tion (exordium), a narrative (narratio) where the orator sets forth the issues of the
problem, a proposition (propositio) where s/he states her/his arguments for the
case, a refutation (refutatio), where s/he gives counterarguments, a confirmation
(confirmatio) where s/he reinforces her/his arguments, and finally a conclusion
(peroratio).

• Style (elocutio) concerns the transcription and the edition of ideas into words
and sentences. Rules of style suggested to privilege clarity – use plain words
and conform to a correct grammar. This was a guarantee to be understood by
everybody. Style was also a literary art where efficiency mattered most. It was
divided into three categories whose goals were to emote (movere), to explain
(docere), or to please (delectare) according to the desired effect on the audience.

• Memory (memoria) was essential that the orator should retain what s/he had to
say. The Ancients advised orators to sleep well, to be in good shape, to exercise
memory by learning by heart, and to use images.

• Delivery (actio) concerned the uttering of the discourse: voice, tone, speed, and
gestures.

Although current discourse strategies may not be the same as those designed
and contrived in Athens or Sicily 2500 years ago, if elucidated they give keys to a
discourse structure. Later, the historical definition of rhetoric has been sometimes
superseded by a pejorative sense meaning empty political speeches or ranting.

14.8.2 Rhetorical Structure Theory

Rhetorical structure theory (RST) is a theory of text organization in terms of relations
that occur in a text. As for Grosz and Sidner, RST identifies a hierarchical tree struc-
ture in texts. A text consists of nonoverlapping segments that define the tree nodes.
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These segments are termed by Mann and Thompson as “text spans.” They corre-
spond typically to one or more clauses. Text spans may be terminal or nonterminal
nodes that are linked in the tree by relations.

Rhetorical relations are sorts of dependencies between two text spans termed the
nucleus and the satellite, where the satellite brings some sort of support or expla-
nation to the nucleus, which is the prominent issue. To illustrate this concept, let us
take the example of the Justify relation from Mann and Thompson (1987, pp. 9–11):
“A justify satellite is intended to increase the reader’s readiness to accept the writer’s
right to present the nuclear material.” In the short text:

1. The next music day is scheduled for July 21 (Saturday), noon–midnight
2. I’ll post more details later,
3. but this is good time to reserve the place on your calendar.

segments 2 and 3 justify segment 1, and they can be represented graphically by
Fig. 14.4.

1–3

2–31

Justify

Fig. 14.4. The Justify relation.

Segments can then be further subdivided using other relations, in the example a
Concession (Fig. 14.5).

1–3

2–31

2 3

Justify

Concession

Fig. 14.5. More relations: Concession.
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Relations are easy to represent in Prolog with facts
rhetorical_relation(relation_type, satellite, nucleus):

rhetorical_relation(justify, 3, 1).
rhetorical_relation(concession, 2, 3).

Another example is given by this funny text about dioxin (Mann and Thompson,
1987, pp. 13–15):

1. Concern that this material is harmful to health or the environment may be mis-
placed.

2. Although it is toxic to certain animals,
3. evidence is lacking that it has any serious long-term effect on human beings.

which can be analyzed with relations Elaboration and Concession in Fig. 14.6.

1–3

2–31

2 3

Elaboration

Concession

Fig. 14.6. Elaboration and Concession.

These relations are equivalent to the Prolog facts:

rhetorical_relation(elaboration, 3, 1).
rhetorical_relation(concession, 2, 3).

14.8.3 Types of Relations

The total number and the type of rhetorical relation vary much among authors and
even among papers written by their creators. Their number ranges from a dozen to
several hundreds. As we saw in the previous section, most relations link a nucleus
and a satellite. Figure 14.7 shows a slightly simplified list of them from Mann and
Thompson (1987). In some instances, relations also link two nuclei. They are shown
in Fig. 14.8.
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Circumstance Evidence Otherwise
Solutionhood Justify Interpretation
Elaboration Cause Evaluation
Background Antithesis Restatement
Enablement Concession Summary
Motivation Condition

Fig. 14.7. RST rhetorical relations linking a nucleus and a satellite.

Sequence Joint Contrast

Fig. 14.8. Relations linking two nuclei.

14.8.4 Implementing Rhetorical Structure Theory

Mann and Thompson gave formal definitions of rhetorical relations using constraints
on the satellite, the nucleus, and both. Table 14.8 shows constraints holding for evi-
dence. In addition, a rhetorical relation entails consequences that are described by an
effect: here, with evidence, the reader’s belief of the nucleus is increased.

Table 14.8. The EVIDENCE relation. After Mann and Thompson (1987).

Relation name EVIDENCE
Constraints on the nucleus N The reader R might not believe to a degree satisfactory

to the writer W
Constraints on the satellite S The reader believes S or will find it credible
Constraints on the N + S combination

R’s comprehending S increases R’s belief of N
The effect R’s belief of N is increased
Locus of the effect N

Such constraints are difficult – if not impossible – to implement in a computer as
is because they involve knowing the thoughts of the reader and the writer. However,
rhetorical relations are often indicated by a handful of specific cue words or phrases.
Mann and Thompson observe that a concession is often introduced by although,
as in the dioxin text from the previous section, or but. A common workaround to
detect a relation is then to analyze the surface structure made of these cue phrases.
They may indicate the discourse transitions, segment boundaries, and the type of
relations. Many cue phrases are conjunctions, adverbial forms, or syntactic patterns
(Table 14.9).

Mann and Thompson also observed that the nucleus and the satellite had typical
topological orders (Table 14.10).

Recently, comprehensive works have itemized cue phrases and other constraints
enabling the rhetorical parsing of a text. Marcu (1997) and Corston-Oliver (1998)
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Table 14.9. Examples of cue phrases and forms.

Cues English French German
Conjunctions Because, in fact, but,

and
Car, en effet, puisque, et,
mais

denn, und, aber,

Adverbial forms In addition, for
example

De plus, en particulier,
particulièrement, par
exemple

dazu, besonders,
zum Beispiel

Syntactic forms Past participles:
given

Present participles: étant
donné

Table 14.10. Typical orders for some relations.

Satellite before nucleus
Antithesis Condition
Background Justify
Concession Solutionhood

Nucleus before satellite
Elaboration Evidence
Enablement Statement

are notable examples of this trend. As an example, Corston-Oliver (1998) recognizes
the Elaboration relation with a set of necessary criteria that must hold between two
clauses, clause 1 being the nucleus and clause 2 the satellite:

1. Clause 1 precedes clause 2.
2. Clause 1 is not subordinate to clause 2.
3. Clause 2 is not subordinate to clause 1.

and cues that are ranked according to an heuristic score (Table 14.11).
Corston-Oliver (1998) applied these cues to analyze the Microsoft Encarta en-

cyclopedia. With the excerpt:

1. A stem is a portion of a plant.
2. Subterranean stems include the rhizomes of the iris and the runners of the straw-

berry;
3. The potato is a portion of an underground stem.

using cue H41, he could obtain the rhetoric structure shown in Fig. 14.9.

14.9 Events and Time

In most discourses, actions, events, or situations have a temporal context. This con-
text is crucial to the correct representation of actions. It involves time, which is re-
flected by time expressions, such as adverbs or adjuncts, now, tomorrow, in 5 min-
utes, and verb tenses, such as present, past, or future.
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Table 14.11. Cues to recognize the Elaboration relation. After Corston-Oliver (1998, p. 129).

Cue Score Cue Name
Clause 1 is the main clause of a sentence (sentence i), and clause
2 is the main clause of a sentence (sentence j), and sentence i
immediately precedes sentence j, and (a) clause 2 contains an
elaboration conjunction (also, for example), or (b) clause 2 is
in a coordinate structure whose parent contains an elaboration
conjunction.

35 H24

Cue H24 applies, and clause 1 is the main clause of the first sentence
in the excerpt.

15 H26

Clause 2 contains a predicate nominal whose head is in the set
{portion, component, member, type, kind, example, instance}, or
clause 2 contains a predicate whose head verb is in the set {include,
consist}

35 H41

Clauses 1 and 2 are not coordinated, and (a) clauses 1 and 2 exhibit
subject continuity, or (b) clause 1 is passive and the head of the direct
object of clause 1 and the head of the direct object of clause 2 have the
same base form, or (c) clause 2 contains an elaboration conjunction.

10 H25

Cue H25 applies, and clause 2 contains a habitual adverb (sometimes,
usually, . . . ).

17 H25a

Cue H25 applies, and the syntactic subject of clause 2 is the pronoun
some or contains the modifier some.

10 H38

1–3

2–31

32

Elaboration

Elaboration

portion

include

Fig. 14.9. Rhetorical structures.
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Understanding temporal relations between events is difficult and may depend on
the language. For instance, there is no exact correspondence for past and present
tenses between French and English. In the next section, we will provide hints on
theories about temporal modeling.

14.9.1 Events

Research on the representation of time, events, and temporal relations dates back
to the beginning of logic. It resulted in an impressive number of formulations and
models. A possible approach is to reify events, that is to turn them into objects, to
quantify them existentially, and to connect them to other objects using predicates
based on action verbs and their modifiers (Davidson 1966). The sentence John saw
Mary in London on Tuesday is then translated into the logical form:

∃ε[saw(ε, John, Mary) ∧ place(ε, London) ∧ time(ε, Tuesday),

where ε represents the event.
To represent the temporal context of an action sequence we can use a set of

predicates. Consider:

Spring is back. Hedgehogs are waking up. Toads are still sleeping.

There are obviously three actions or events described here. These events are located
in time around a reference point defined by the return of spring. From this point, the
hedgehogs’ waking up process extends onwards while the toads’ sleeping process
overlaps it (Fig. 14.10). Events have a different duration: the first sentence merely
describes a single time point whereas the two last processes are defined inside inter-
vals.

Spring is back

Hedgehogs are waking up

Toads are still sleeping

Fig. 14.10. Events.

Let us denote e1, e2, and e3 the events in Fig. 14.10, and let us portray them in
Prolog. In addition, let us use the agent semantic role that we borrow from the case
grammars. We have a first representation:

event(e1).
is_back(e1).
agent(e1, spring).
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...
event(e2).
waking_up(e2).
agent(e2, hedgehogs).
...

event(e3)
sleeping(e3).
agent(e3, toads).

14.9.2 Event Types

Events are closely related to sentence’s main verbs, and different classifications have
been proposed to associate a verb with a type of event. Vendler (1967) for English,
Gosselin (1996) for French, and others came to a consensus to divide verbs into four
categories, denoting:

• A state – a permanent property or a usual situation (e.g., be, have, know, think).
• An achievement – a state change, a transition, occurring at single moment (e.g.,

find, realize, learn).
• An activity – a continuous process taking place over a period of time (e.g., work,

read, sleep). In English, activities often use the present perfect, -ing.
• An accomplishment – an activity with a definite endpoint completed by a result

(e.g., write a book, eat an apple).

Some authors have associated events to verbs only. It is safer, however, to take
verb phrases – predicates – and even subjects into account to link events to Vendler’s
categories (Table 14.12). Compare The water ran, which is an activity in the past,
and The hurdlers ran (in a competition), which depicts an achievement.

14.9.3 Temporal Representation of Events

Let us now try to represent processes in a temporal chronology. In the example in
Fig. 14.10, the only process that has a definite location is e1. It is associated to a cal-
endar period: spring. Other processes are then relative to it. As for these sentences, in
most discourses it is impossible to map all processes onto an absolute time. Instead,
we will represent them using relative, and sometimes partial, temporal relations.

Simplifying things, we will suppose that time has a linear ordering and that each
event is located in time: it has a certain beginning and a certain end. This would
not be true if we had considered conditional statements. Temporal relations asso-
ciate processes to time intervals and set links, constraints between them. We will
adopt here a model proposed by Allen (1983, 1984), whose 13 relations are listed in
Table 14.13.

Using Allen’s representation, relationsbefore(e1, e2), after(e2, e1),
and contains(e3, e1) depict temporal constraints on events e1, e2, and e3
in Sect. 14.9.1. Temporal relations result in constraints between all processes that
enable a total or partial ordering of them.
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Table 14.12. Vendler’s verb categories.

English French German
State The cat is sick

I like chocolate
Le chat est malade
J’aime le chocolat

Die Katze ist krank
Ich esse Schokolade
gern

Activity She works for a
company
He is writing a book

Elle travaille pour une
entreprise
Il écrit un livre

Sie arbeitet für eine
Firma
Er schreibt ein Buch

Accomplishment He wrote a book
The dormouse ate
the pears

il a écrit un livre
Le loir a mangé les
poires

Er hat ein Buch
geschrieben
Die Haselmaus hat die
Birnen gegessen

Achievement The sun set
I realized I was
wrong

Le soleil s’est couché
Je me suis rendu
compte que j’avais tort

Die Sonne ist unterge-
gangen
Ich habe eingesehen,
ich nicht recht hatte

Table 14.13. Allen’s temporal relations.

# Relations Graphical representations
1. before(a, b) a b
2. after(b, a)

3. meets(a, b) a b
4. met_by(b, a)

5. overlaps(a, b) a b

6. overlapped_by(b, a)

7. starts(a, b)
a

b

8. started_by(b, a)

9. during(b, a)
a

b

10. contains(a, b)

11. finishes(b, a)
a

b

12. finished_by(a, b)

a
b

13. equals(a, b)
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14.9.4 Events and Tenses

As we saw, event modeling results in time intervals and in relations between them.
From event examples in Fig. 14.10, we can define two new temporal facts:

• instantaneous events, which are punctual and marking a transition
• situations, which have a duration – true over an interval

Relations as well as events or situations are not accessible directly. As for rhetor-
ical relations or segment boundaries, we need cues or markers to track them. In the
example above, we have mapped events onto verbs. This hints at detection and de-
scription methods. Although there is no definitive solution on how to detect events,
many techniques rely on verbs and verb phrases to act as markers.

A first cue to create and locate an event is the verb tense. A sentence sequence
defines a linear sequence of enunciation events. A basic distinction is between the
moment of the enunciation and the time of the event (or situation). Figure 14.11
represents a kind of ideal time.

past present future

moment
of enunciation

Time of the event or
situation

Fig. 14.11. Ideal time: past, present, and future.

The sentence

Ernest the hedgehog ate a caterpillar

creates two events; one corresponds to the processes described the sentence, e1,
and the other, e2, to the time of speech. Both events are linked by the relation
before(e1, e2). We could have refined the model with a beginning e1b and
an end e1e of Ernest’s dinner. New relations would be:

before(e1b, e1e).
before(e1b, e2).
before(e1e, e2).

Using a verb classification and tenses helps determine the events location or sit-
uation boundaries. We may also rely on time adverbs and time adjuncts such as for
five minutes, tomorrow, etc.

The ‘ideal’ representation, however, is not sufficient to describe many narrative
phenomena where the writer/reader viewpoint is moved relatively to temporal events.
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Reichenbach (1947) elaborated a more complex representation to take this viewpoint
into account. Basically, verb tenses are mapped onto a triplet representing on a linear
scale the point of the event or situation denoted E, the point of speech denoted S, and
a point of reference denoted R. The reference corresponds to a sort of writer/reader
viewpoint.

Let us first consider the time of speech and the event. It is clear to the reader that
an event described by basic tenses, past, present, and future, is respectively before,
coinciding, and after the point of speech (Fig. 14.12).

Past Present Future
E S E S S E

Fig. 14.12. Ideal tenses.

Reichenbach’s tense model introduces the third point to position events relatively
in the past or in the future. Consider the past sentence

Hedgehogs had already woken up when the sun set.

Two events are described, the hedgehogs’ waking up, ewu, and the sunset, ess.
Among the two events, the speaker viewpoint is focused by the clause Hedgehogs
had already woken up: then, the action takes place. This point where the speaker
moves to relate the story is the point of reference of the narrative, and the event is
before it (Fig. 14.13). The point of reference of the first process enables us to locate
the second one relatively to it and to order them in a sequence.

Past perfect Simple past Present perfect
Hedgehogs had woken up Hedgehogs woke up Hedgehogs have woken up

E R S R, E S E S, R

Fig. 14.13. Event, reference, and speech for some English tenses.

Some tenses describe a time stretch of the event, as for the French imparfait com-
pared to the passé composé (Fig. 14.14), or continuous tenses of English (Fig. 14.15).

14.10 TimeML, an Annotation Scheme for Time and Events

Several schemes have been proposed to annotate temporal information in texts. Many
of them were incompatible or incomplete, and in an effort to reconcile and unify the
field, Ingria and Pustejovsky (2004) introduced the XML-based Time Markup Lan-
guage (TimeML). TimeML is a specification language whose goal is to capture most
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Passé composé Imparfait
Les hérissons se sont réveillés Les hérissons se réveillaient

R, E S SR, E

Fig. 14.14. French imparfait and passé composé.

Past perfect, extended Simple past, extended Present perfect, extended
Hedgehogs had been waking
up

Hedgehogs were waking up Hedgehogs have been wak-
ing up

E R S SR, E E S, R

Fig. 14.15. Some English tenses involving a stretch of time.

aspects of temporal relations between events in discourses. It is based on Allen’s
(1984) relations and inspired by Vendler’s (1967) classification of verbs.

TimeML defines the XML elements TIMEX3 to annotate time expressions (at
four o’clock), EVENT to annotate the events (he slept), and “signals”. The SIGNAL
tag marks words or phrases indicating a temporal relation. It includes function words
such as later and not (he did not sleep). TimeML also features elements to connect
entities using different types of links, most notably temporal links, TLINKs, that
describe the temporal relation holding between events or between an event and a
time.

TimeML elements have attributes. For instance, events have a tense, an aspect,
and a class. The seven possible classes denote the type of event, whether it is a
STATE, an instantaneous event (OCCURRENCE), etc.

The sentence

All 75 people on board the Aeroflot Airbus died when it ploughed into a
Siberian mountain in March 1994

is marked up as follows (Ingria and Pustejovsky 2004):

All 75 people
<EVENT eid="e7" class="STATE">on board</EVENT>
<MAKEINSTANCE eiid="ei7" eventID="e7" tense="NONE"
aspect="NONE"/>
<TLINK eventInstanceID="ei7" relatedToEvent="ei5"
relType="INCLUDES"/>
the Aeroflot Airbus
<EVENT eid="e5" class="OCCURRENCE" >died</EVENT>
<MAKEINSTANCE eiid="ei5" eventID="e5" tense="PAST"
aspect="NONE"/>
<TLINK eventInstanceID="ei5" signalID="s2"
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relatedToEvent="ei6" relType="IAFTER"/>
<SIGNAL sid="s2">when</SIGNAL>
it
<EVENT eid="e6"
class="OCCURRENCE">ploughed</EVENT>
<MAKEINSTANCE eiid="ei6" eventID="e6" tense="PAST"
aspect="NONE"/>
<TLINK eventInstanceID="ei6" signalID="s3"
relatedToTime="t2" relType="IS_INCLUDED"/>
<TLINK eventInstanceID="ei6" relatedToEvent="ei4"
relType="IDENTITY"/>
into a Siberian mountain
<SIGNAL sid="s3">in</SIGNAL>
<TIMEX3 tid="t2" type="DATE" value="1994-04">March
1994</TIMEX3>.

In the example, three events e5, died, e6, ploughed, and e7, on board, are an-
notated and instantiated using the MAKEINSTANCE tag. The text contains one time
expression, March 1994, which is annotated using TIMEX3. The events and the time
expressions are connected by two temporal links, TLINK. The first link specifies
that the passengers died after the plane ploughed, using the relatedToEvent at-
tribute. The second link specifies that event ploughed is included in March 1994. A
third and last TLINK refers to an event, e4, mentioned in a previous, noncited sen-
tence. The temporal signals when and in can also be relevant, and they are tagged
with a SIGNAL tag.

14.11 Further Reading

Schiffrin (1994) and Coulthard (1985) give general introductions to discourse. Ducrot
and Schaeffer (1995) and Simone (1998) provide shorter and very readable accounts.
Tesnière (1966) is an outstanding description of anaphora (Chap. 42) and anaphors
(Chap. 43). Kamp and Reyle (1993) provide a thorough logical model of discourse
that they called the discourse representation theory – DRT. Although complex and
difficult to implement, it is frequently cited.

The MUCs spurred very pragmatic research on discourse, notably on coreference
resolution. They produced a coreference annotation scheme that enabled researchers
to evaluate competing algorithms and that became a standard. Research culminated
with the design of machine learning strategies. Soon et al. (2001) were first to develop
a system offering a performance matching systems with manually written rules. Ng
and Cardie (2002) further improved this strategy by extending the parameters from
12 to 38 and produced results better than all other systems.

Corpus Processing for Lexical Acquisition by Boguraev and Pustejovsky (1996)
covers many technical aspects of discourse processing. It includes extraction of
proper nouns, which has recently developed into an active subject of research.
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Introductions to rhetoric include books by Corbett and Connors (1999), Reboul
(1994), and Perelman and Olbrechts-Tyteca (1976).

Time processing in texts is still a developing subject. Reichenbach (1947) de-
scribed a model for all the English tenses. Starting from this foundational work, Gos-
selin (1996) provided an account for French that he complemented with a process du-
ration. He described rules and an implementation valid for French verbs. Ter Meulen
(1995) describes another viewpoint on time modeling in English, while Gagnon and
Lapalme (1996) produce an implementation of time processing for French based on
the DRT. Johansson et al. (2005) describe how semantic role labeling and time pro-
cessing can be used to generate animated 3D scenes from written texts.

Exercises

14.1. Choose a newspaper text of about ten lines. Underline the references and link
coreferences.

14.2. Write DCG rules to detect noun groups and pronouns of Exercise 14.1 and
collect the discourse entities in a Prolog list.

14.3. Write a grammar recognizing names (proper nouns) in English, French, or Ger-
man. You will consider that a name consists of a title followed by a surname whose
first letter is capitalized.

14.4. Choose a newspaper text of about ten lines. Collect noun groups and pronouns
in a list with a noun group detector. Write a coreference solver in Prolog to associate
each pronoun to all preceding noun groups.

14.5. Using the program written for Exercise 14.4, write a first predicate that retains
the first preceding noun group – first potential antecedent – and a second predicate
that retains the two first noun groups.

14.6. Implement the Kameyama algorithm of Sect. 14.7.2 in Prolog.

14.7. Select a newspaper article and underline elliptical sentences or phrases.

14.8. Using the result of Exercise 14.7, describe rules that would enable you to re-
solve ellipses.

14.9. Select one page from a technical text and annotate clauses with rhetorical rela-
tions listed in Table 14.7.

14.10. Write rules using the model of Table 14.10 to recognize the EVIDENCE
rhetorical relation.

14.11. Describe verb tenses in languages you know in terms of point of the event, of
speech, and of reference, as in Sect. 14.9.4.
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Dialogue

15.1 Introduction

While discourse materialized in texts delivers static information, dialogue is dynamic
and consists of two interacting discourses. Once written, a discourse content is un-
alterable and will remain as it is for its future readers. On the contrary, a dialogue
enables exchange information flows, to complement and to merge them in a com-
position, which is not known in advance. Both dialoguing parties provide feedback,
influence, or modify the final content along with the course of the conversation.

In this chapter, we will envision dialogue within the framework of an interface
between a system and a user. Parties have information to transmit or to request using
natural language. The dialogue purpose will be to make sure that the request is com-
plete or the information has been well captured or delivered. Naturally, as for other
discourse applications, a dialogue module is only a part of the whole system using
language processing techniques we have described before.

15.2 Why a Dialogue?

The first role of a dialogue module as an interface is to manage the communica-
tion and to coordinate the turn-taking between the user and the system. It is also a
kind of integration shell that calls other language processing components to analyze
user utterances or to generate system answers. In addition, interaction and dialogue
techniques can help linguistic analysis be more flexible and recover from failures.

We saw that coreferences are sometimes difficult to resolve. They provide an
example of interaction usefulness. Instead of having an interactive system conjecture
about an ambiguous pronoun, it is often safer for it to ask the user himself/herself
to resolve the ambiguity. Two strategies are then possible: the system can infer a
missing reference and ask the user for a confirmation. Or, in case of a more difficult
ambiguity, it can ask the user to reformulate completely his/her sentence.

To summarize, dialogue systems can help manage a user’s discourse to:
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• complement information when pieces are missing to understand a sentence or to
carry out a command

• clarify some ambiguous words or constructions
• confirm information or intention to manage errors when a certain failure rate is

unavoidable, e.g., with speech recognition operating on naturally flowing speech

15.3 Simple Dialogue Systems

Many simple dialogue systems in commercial operation aim to provide information
through telephones. Such speech servers receive calls from users requesting infor-
mation in a specific domain and answer interactively to questions. Although many
servers still interact with a user using touch-tone telephones, more and more they
feature speech recognition and speech synthesis modules.

Speech recognition conditions are difficult with telephone servers since they have
usually to handle a poor acoustic environment. It naturally comes at a price: recog-
nition is prone to errors and the number of active words – words that the system can
recognize at a given time – cannot be much more than a hundred on many systems.
Speech recognition is then a bottleneck that limits the whole system performance.

For reasons of robustness and cost, operating components of real-world dialogue
applications rarely correspond to the integration of classical linguistic layers: mor-
phology, syntax, and semantics. The recognition itself does not attempt to produce
the full stream of words but generally uses word spotting techniques. Word spotting
enables a word to be recognized within a short fragment of surrounding speech or
noise. So a word will be correctly identified, even if you say hmm before or after it.

Because of word spotting, spoken systems do not stack a complete parsing after
speech recognition. They focus on interesting words, meaningful according to con-
text, and link them into information frames. These frames miss some words, but the
important issue here is not to miss the overall meaning and to keep dialoguing with
the user in real time and at a reasonable computational cost. Typical examples of such
dialogue systems, elementary from a linguistic viewpoint, are based on automata.

15.3.1 Dialogue Systems Based on Automata

Dialogue systems based on finite-state automata have transitions triggered by a lim-
ited number of isolated words (Fig. 15.1). At each state, the automaton synthesizes a
closed question: it proposes a finite choice of options. If the word recognition device
has not understood a word, it loops onto the same state, asking for the user to repeat
his/her command. If it corresponds to a legal transition, the automaton moves the
user to another state.

As we said, speech recognition is not foolproof. The system avoids possible er-
rors through a confirmation message while proceeding to a next state. On the leftmost
edge of Fig. 15.1

We are happy to give you information on loans?
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Hello, this is Happy Bankers.
Which type of information do you want?
Loans, deposits, opening hours

you want:

We are happy to give you 
information on loans… Loans

NoDeposits

Are you interested 
in deposits? 

Are you interested in 
opening hours? 

Sorry, can you 
repeat? 

Sorry, can you 
repeat? 

Sorry, can you 
repeat? 

Sorry, can you 
repeat? 

Opening hours

No

Yes

No

Yes

Fig. 15.1. An automaton for word-triggered dialogues.

the system uses an implicit confirmation. The user can accept the ongoing transition
either explicitly by saying yes, or implicitly by saying nothing. It can also contradict
– only if necessary – and reject the transition by saying, for instance, no or

No, I wanted to know about my account balance.

In this case, the user will regress to the previous state. Other edges as in the middle
and rightmost transitions:

Are you interested in deposits?

correspond to explicit confirmations. They require a mandatory answer – yes or no –
from the user.

As a general design rule, confirmations should not be too numerous to be ac-
ceptable by users because they tend to be tedious if overused. The first strategy is
certainly preferable.

15.3.2 Dialogue Modeling

The basic structure of dialogue automata is far from providing a natural interaction.
However, it implements some fundamental characteristics shared by all dialogue sys-
tems. Interactions between the user and the system correspond to pairs: the system’s
turns and the user’s turns. These pairs, which may be nested, have been extensively
studied. Levinson (1983) proposed a classification of them according to the nature
of their first member. Table 15.1 shows an excerpt of Levinson’s classification.

Levinson’s model, however, is not sufficient to take possible errors and confir-
mation into account. Moeschler and others at the University of Geneva (Moeschler
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Table 15.1. Classification of dialogue pairs.

First member Preferred second member Dispreferred second member
Offer, Invitation Acceptance Refusal
Request Compliance Refusal
Assessment Agreement Disagreement
Question Expected answer Unexpected answer, no answer
Blame Denial Admission

1989; Moeschler and Reboul 1994) proposed a more elaborate model, which corrects
some flaws. The model divides a dialogue as a sequence of exchanges, but it com-
plements pairs with a final assessment. An exchange is a sequence of three different
interventions:

• initiative interventions, which open an exchange (I)
• reaction interventions, which are answers to initiatives (R)
• evaluation interventions, which assess exchanges and possibly close them (E)

In addition, exchanges may be nested and hence have a recursive structure.
Table 15.2 shows a first exchange pictured by the leftmost edge of the automaton

in Fig. 15.1. It is annotated with intervention tags: I , R, and E. The two first turns
are an initiative and a reaction. The last turn is an implicit acknowledgment showing
that the system has understood the user command.

Table 15.2. An exchange.

Utt. no. Turns Utterances Tags
1 S: Which type of information do you want: loans, deposits, opening

hours?
I1

2 U: Loans R1

3 S: We are happy to give you information on loans E1

Along with the deposit question (middle edge), Fig. 15.1 shows a nested interac-
tion in the evaluation. There are first an initiative and a reaction. The third turn is an
evaluation, which is a recursive exchange, consisting of an initiative and a reaction
(Table 15.3).

15.4 Speech Acts: A Theory of Language Interaction

Turns triggered by isolated words and phrases are a rudimentary dialogue model.
Ideally, systems should handle more complicated phrases or sentences. In addition,
they should take a more elaborate interaction structure into account.
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Table 15.3. An exchange with a nested evaluation exchange.

Utt. no. Turns Utterances Tags
1 S: Which type of information do you want: loans, deposits,

opening hours?
I1

2 U: Deposits R1

3
4

S:
U:

Are you interested in deposits?
Yes

I
2
1

R
2
1

–
E1

Language is basically a means for people to act one upon the other. However,
linguistic theories as we have considered them until now do not cover this interaction
aspect. Some authors have tried to remedy it and to investigate other approaches. In
contrast to formal or lexical semantics, which are based on logic, they have attempted
to give language a more “performative” foundation. Such a framework has interested
modern linguists such as Bühler (1934, 1982) and later language philosophers such
as Austin (1962) and Searle (1969).

Bühler postulated that language had three semantic functions according to his
organon model:

• a representation (Darstellung) of objects and the state of affairs that is being
described

• an expression (Ausdruck) materializing the psychological state of mind of the
speaker – the sender of the message

• an appeal (Appell) corresponding to an effect on the hearer – the receiver of the
message

Although Bühler admitted the dominance of the representation function of lan-
guage acknowledged before him, he stressed the psychological aspects of spoken
communication describing participants as “psychophysical” systems. He was the first
modern linguist to introduce that speech involved a sequence of acts that he named
Sprechakt enabling the hearer to recognize the speaker’s state of mind or internal
planning.

Austin came to a similar conclusion and considered also speech as a sequence of
acts. For each of these acts, he distinguished what pertained to the classical side of
linguistics and resorted to morphology, syntax, and semantics from pragmatics and
the theory of action. He referred to the former as locutions and the latter as illocu-
tions. From these considerations on, Austin modeled the act of saying something,
with three components representing three different aspects of communication:

• locutionary – i.e., an act of saying something, corresponding to a phonetic utter-
ance, a syntactic structure, and a formal semantics content

• illocutionary – i.e., a conversational act, which can be, for instance, to inform, to
suggest, to answer, to ask

• perlocutionary – i.e., the effects of these acts, which can be to frighten, to worry,
to convince, to persuade
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Classical grammar recognizes certain links between locutionary and illocution-
ary content. Some types of syntactical forms are frequently associated with speech
acts (Table 15.4).

Table 15.4. Syntactical forms and speech acts.

Classical speech acts Syntactic forms
Assertions, statements Affirmatives or declaratives
Orders, commands Imperatives
Questions Interrogatives

However, the association is not systematic. Speech acts are not always related to
a logical – or propositional – content that could have been derived from the formal
structure of sentences. Rhetorical questions such as Can you open the door? are
in fact orders, and imperatives such as Have a good day! are greetings or wishes.
In addition, a syntactical classification is too coarse to reflect the many needs of
interaction analysis.

To cope with different aspects of communication, many authors have proposed a
classification of illocutionary acts. We retain Searle’s initial classes, which are best
known because they probably capture essential interaction paradigms:

• assertives, such as stating, asserting, denying, informing.
• directives, such as requesting, asking, urging, commanding, ordering.
• commissives, such as promising, committing, threatening, consenting, refusing,

offering.
• declaratives, such as declaring war, resigning, appointing, confirming, excom-

municating. Declarative speech acts change states of affairs.
• expressives, which are related to emotions or feelings such as apologizing,

thanking, protesting, boasting, complimenting.

Searle (1969) refines the speech act model by proposing conditions to complete
an act successfully. Conditions are a set of conversational postulates that should be
shared by speakers and hearers. These conditions are divided into a propositional
content, a preparatory condition, a sincerity, and an essential condition. Tables 15.5
and 15.6 reproduce two success conditions to speech acts (Searle 1969, pp. 66–67).

The work of Austin and Searle has been very popular in the computational lin-
guistics community and, far beyond it, in language in certain fields of philosophy
and psychology. Although some people consider them as inventors, their findings
are not completely new. Gorgias, a Greek rhetorician who lived 2500 years before
them, wrote:

The effect of speech upon the condition of the soul is comparable to the
power of drugs over the nature of bodies. For just as different drugs dispel
different secretions from the body, and some bring an end to disease and
others to life, so also in the case of speeches, some distress, others delight,



15.5 Speech Acts and Human–Machine Dialogue 417

Table 15.5. Conditions to request, order, command. After Searle (1969).

Conditions Values
Propositional content Future act A of Hearer
Preparatory

1. Hearer is able to do A. Speaker believes Hearer is able to do
A

2. It is not obvious to both Speaker and Hearer that Hearer will
do A in the normal course of events of his own accord

3. (For order and command) Speaker must be in a position of
authority over Hearer

Sincerity Speaker wants Hearer to do A
Essential Counts as an attempt to get Hearer to do A

Table 15.6. Conditions to greeting. After Searle (1969).

Conditions Values
Propositional content None
Preparatory Speaker has just encountered (or has been introduced to, etc.)

Hearer
Sincerity None
Essential Counts as courteous recognition of Hearer by Speaker

some cause fear, others make the hearers bold, and some drug and bewitch
the soul with a kind of evil persuasion.

Encomium of Helen (Trans. RK Sprague)

15.5 Speech Acts and Human–Machine Dialogue

15.5.1 Speech Acts as a Tagging Model

Many language processing applications use the speech act theory as a kind of syn-
tax to parse a discourse or a dialogue. Constituents are the discourse segments, and
categories are illocution classes, termed broadly as speech acts or dialogue acts. As
a result, a discourse is a sequence of segments annotated with conversation acts.

Authors may not follow the Searle’s classification. Gazdar and Mellish (1989)
provide a small set of “illocutionary acts,” among which they quote: request, state-
ment, suggestion, question. Using these acts, Gazdar and Mellish (1989) can label
the dialogue in Table 15.7.

Acts such as challenge or concession may be more suited to analyzing a human
conversation rather than a spoken human–machine interaction. In addition, appli-
cations may need different sorts of acts. Therefore, most sets of speech acts are de-
signed for a specific dialogue system and are closely tied to it. Acts then serve as tags
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Table 15.7. Illocutionary acts in a dialogue. After Gazdar and Mellish (1989, p. 385).

Turns Utterances Illocutionary acts
A I really think the automobile needs servicing Statement
B But we had done it recently Challenge
A No, not for two years. . . Challenge

Interruption
A Incidentally did you hear that gas prices are about to double? Concession

to annotate discourse segments. Although disputable from a theoretical viewpoint,
this interpretation of speech acts as tags is used as a model for scores of human–
machine dialogue systems. We examine one of them in the next section.

15.5.2 Speech Acts Tags Used in the SUNDIAL Project

Bilange (1992) and Cozannet (1992) list a collection of speech acts that they used in
the SUNDIAL project (Table 15.8). The acts are divided into initiatives, reactions,
and evaluations following Moeschler’s (1989) dialogue modeling. They are intended
to enable a user to make a train ticket reservation by telephone.

Table 15.8. Speech acts used in SUNDIAL (slightly modified).

Acts System/ Descriptions
User act

Initiatives
request(P) S Open question or request for the value of P
yn_question(P, Val) S Is value of P Val? Answer should be yes or no
altern_question(P) S Alternative question: Vanilla or strawberry?
repeat(P) S/U Repetition request
inform(P) S/U Inform of P
recap(P) S Recapitulation of solved problems
Reactions
answer(P, Val) U Gives a value Val on the request of P
select(P, Val) U Gives a value Val on an alternative question on P
accept(P, Val) U Accept or confirm the value Val of P
reject(P, Val) U Reject the value Val of P
Evaluations
impl_valid(P, Val) S Implicit validation of confirmation of the value

Val of P
correct(P, Val) U Gives a new value Val to P

Other projects such as VERBMOBIL use speech acts that are even more tied
to the application (Jekat et al. 1995). VERBMOBIL provides a language support to
an appointment system and its acts include INTRODUCE_NAME, ACCEPT_DATE,
REJECT_DATE, SUGGEST_SUPPORT_DATE.
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15.5.3 Dialogue Parsing

Dialogue applications, for example, speech servers, are aimed at answering relatively
simple inquiries such as providing information on train timetables, airfares, or credit
card authorizations. Their possibilities are generally well understood by users who
call them and who do not expect to have a philosophical conversation with the sys-
tem.

For this reason, in many applications it is possible to restrict a human–machine
transaction to a dialogue opening, a negotiation where a user formulates a problem
and solves it with the system, and a closing. Using Moeschler’s model, we can de-
scribe each of these parts as a sequence of exchanges where utterances are divided
into initiatives (Ii), reactions (Ir), and evaluations (Ie).

Table 15.9 shows a dialogue example from Andry (1992), and Table 15.10 shows
the derived structure of the negotiation part. Utterances come either from the user (u)
or the system (s) and consist of one or more speech acts. Utterance S2

London Paris which date?

is split into two acts. The first one (S1a)

London Paris

corresponds to an implicit confirmation that the system has understood the departure
and arrival cities Ie(s, [impl_valid]). The second one (S2b)

which date

is an explicit question to the user Ii(s, [request]).
We can parse the exchange in Table 15.10 and get its structure using DCG rules.

We first write a grammar to model the nonrecursive exchanges. We use variables to
unify the speaker – user or system – and the type of act.

exchange(ex(i(X, SA1), r(Y, SA2), e(E))) -->
initiative([X, SA1]),
reaction([Y, SA2]),
evaluation(E),
{X \= Y}.

exchange(ex(i(X, SA1), r(Y, SA2))) -->
initiative([X, SA1]),
reaction([Y, SA2]),
{X \= Y}.

exchange(ex(e(X, SA1), r(Y, SA2))) -->
evaluation([X, SA1]),
reaction([Y, SA2]),
{X \= Y}.

We model initiatives, reactions, and evaluations as a sequence of speech acts:
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Table 15.9. An example of dialogue with SUNDIAL.

Turns Utterances
S1 Bonjour puis-je vous aider?

‘Hello, can I help you?’
U1 Je veux une réservation de Londres à Paris

‘I want a reservation from London to Paris’
S2 Londres Paris à quelle date voulez-vous voyager?

‘London Paris which date?’
U2 Je veux voyager le 20 juin

‘I want to travel June 20’
S3 Le 20 juin à quelle heure?

‘June 20 which time?’
U3 À 17 heures 15

‘5.15 pm’
S4 17 heures 15?

‘5.15 pm?’
U4 Oui

‘Yes’
S5 Le vol BA-123 part à 17 heures 15 et arrive à Charles-de-

Gaulle à 18 heures 39, est-ce que cela vous convient?
‘Flight BA-123 departure 5.15 pm and arrival 6.39 pm at
Charles-de-Gaulle airport. Is that OK for you?’

U5 Oui
‘Yes’

S6 Quel est votre nom?
‘What is your name?’

U6 Luc Martin
S7 Luc Martin une réservation pour Luc Martin sur le vol BA-

123 arrivant à Charles-de-Gaulle à 18 heures 39
‘Luc Martin a reservation for Luc Martin on flight BA-123
arriving at Charles-de-Gaulle at 6.39 pm’

U7 Oui
‘Yes’

S8 Votre réservation a été confirmée au revoir
‘You reservation has been confirmed goodbye’

U8 Au revoir
‘Goodbye’

initiative([Speaker, SpeechActs]) -->
acts([Speaker, SpeechActs]).

reaction([Speaker, SpeechActs]) -->
acts([Speaker, SpeechActs]).

evaluation([Speaker, SpeechActs]) -->
acts([Speaker, SpeechActs]).
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Table 15.10. Intervention structure.

Exch. Interventions Recursive interventions Turns
Ii(s, [request]) S1

E1 Ir(u, [answer]) U1
Ie(S, [impl_valid]) S2a
Ii(s, [request]) S2b

E2 Ir(u, [answer]) U2
Ie(s, [impl_valid]) S3a
Ii(s, [request]) S3b

E3 Ir(u, [answer]) U3
E3e Ie(s, [impl_valid]) S4

Ir(u, [accept]) U4
E4 Ii(s, [recap, yn_question]) S5a S5b

Ir(u, [accept]) U5
Ii(s, [request]) S6

E5 Ir(u, [answer]) U6
Ie(s, [impl_valid]) S7a
Ii(s, [recap]) S7b

E6 Ir(u, [accept]) U7
Ie(s, [impl_valid]) S8

To take the recursive exchange into account, we have to add:

evaluation(S) --> exchange(S).

Finally, we define the dialogue as a sequence of exchanges:

dialogue([SE | RS]) -->
exchange(SE), dialogue(RS).

dialogue([]) --> [].

Although these rules do not completely implement Moeschler’s model, they give
an insight to it.

15.5.4 Interpreting Speech Acts

To complete our dialogue survey, we outline ways to map utterances to speech acts,
that is, in our example above, to annotate What is you name? as an open question.
Some words, phrases, or syntactic features have a correspondence in terms of speech
acts, as shown in Table 15.11. A first method is then to spot these specific patterns or
cues. Cues enable us to delimit segments, to generate candidate speech acts, and to
annotate the corresponding segment content. Once segments are identified, we can
proceed to parse them and obtain their logical form.

However, identification is not straightforward because of ambiguity. Some words
or syntactic features have more than one speech act candidate. The interrogative
mode usually corresponds to questions, but not always as in Can you do that for
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Table 15.11. Syntactic forms or templates linking utterances to speech acts.

Syntactic features Candidate speech acts
Interrogative sentence yn_question, altern_question,

request
yes, right, all right, OK accept, impl_valid
no, not at all reject
Declarative sentence inform, impl_valid
sorry, pardon, can you repeat repeat
not X but Y, that’s not X it’s Y in fact. correct

me?, which is likely to be a polite order in a human conversation. The system then
produces several possible acts for each utterance or sequence of utterances: Yes in the
dialogue in Table 15.9 is either an acceptation (U5) or an implicit validation (S4).

The identification of speech acts for unrestricted dialogues has not received a
definitive solution yet. However, it has attracted much attention and reasonably good
solutions for applications like speech servers. In a spoken dialogue, what matters are
the user’s acts that an automatic system identifies using a tagging procedure. Tagsets
can be relatively generic, as in the SUNDIAL project, or application-oriented, as in
VERBMOBIL. DAMSL (Allen and Core 1997) is another oft-cited tagset.

Speech act tagging uses statistical approaches or reasoning rules, or possibly a
combination of both. While many systems used by speech servers are based on rules,
Alexandersson (1996) describes a statistical technique similar to those used in part-
of-speech tagging. He uses a dialogue corpus where the turns are annotated with
illocutionary acts instead of parts of speech. The tagger is a hidden Markov model,
and the training procedure derives dialogue act n-grams. As for part-of-speech tag-
ging, the stochastic dialogue act tagging consists in finding the most likely sequence
of tags given a sequence of words and features.

As general principles, the features that rules or statistical modeling take into ac-
count are:

• Cue words or phrases, which may be linked to specific speech acts.
• The syntactic and semantic forms of the utterance.
• Expectations to apply constraints on possible speech acts. These are based on

transitions from a previous state to the current state of the dialogue: when the
system asks a question, it expects an answer, a rejection or a failure, and it can
discard other acts.

• Task modeling and goal satisfaction. This point extends the previous one. It re-
strains possible user acts and parameter values according to the progress point
where the user is in the dialogue.

15.5.5 EVAR: A Dialogue Application Using Speech Acts

EVAR – Erkennen, Verstehen, Antworten, Rückfragen – is a dialogue system in-
tended to provide information on train schedules in Germany (Mast 1993, Mast et al.
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1994). It gives an example of a thorough task modeling that enables the system to re-
strain the number of possible dialogue acts at a given point of the inquiry process. It
avoids random initiatives from the user thanks to a constant guidance process. EVAR
structures the dialogue process in a sequence of phases:

• a greeting by the system
• a request from the user
• a clarification consisting of a confirmation of data requested by the user and

possible requests for details and specifications
• an answer from the system
• a closing

EVAR enables transactions such as those in Table 15.12.
The finite state automaton in Fig. 15.2 models the dialogue progress. The S_

prefix denotes a system’s turn, and U_ denotes a user’s turn.

Closing Request Clarification Answer Greeting 

U_REQUEST S_GREETING S_EXT_ANSWER U_NEGATION S_CLOSING 

S_ANSWER 

U_CLOSING S_ANSWER 

U_CLOSING U_AGREE 

Specification/ 

Details/ 

S_REQ_DET S_SPEC_REQ_CONF U_CONFIRMATION U_ADDITION 

U_CLOSING U_NEG_CONF 

Details/Request for details 

Confirmation/ 

S_REQ_SPEC S_SPEC_REQ_CONF U_CONFIRMATION U_ADDITION 

U_CLOSING U_NEG_CONF 

Specification/Request for specification 

S_REQ_CONF U_CONFIRMATION 

S_SPEC_REQ_CONF U_NEG_CONF 

Confirmation 

Fig. 15.2. The EVAR dialogue model. After Mast et al. (1994).

15.6 Taking Beliefs and Intentions into Account

The models of dialogue we have examined so far have an external viewpoint in the
sense that they are based on observations of the user’s behavior by the system. Par-
allel to them, some authors tried to take into account the user’s beliefs, desires, and
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Table 15.12. A dialogue in the EVAR prototype. After Mast et al. (1994).

Turns Dialogue Phases
S: Guten Tag. Hier ist die automatische Intercity-Auskunft.

Welche Information benötigen Sie?
‘Hello. This is the Automatic Travel Information System.
What information do you need?’

Greeting

U: Ich möchte morgen nach Hamburg fahren.
‘Tomorrow I want to go to Hamburg.’

Request

S: Sie möchten morgen nach Hamburg fahren?
‘Tomorrow you want to go to Hamburg?’

Confirmation

U: Ja morgen.
‘Yes tomorrow.’

S: Von wo möchten Sie abfahren?
‘Where do you want to start?’

Request for details

U: München
‘Munich’

S: Morgen von München nach Hamburg
‘Tomorrow from Munich to Hamburg’

U: Ja
‘Yes’

S: Wann möchten Sie fahren?
‘When do you want to leave?’

Request for speci-
fication

U: Morgen früh
‘Early in the morning’

S: Morgen früh von München nach Hamburg
‘Tomorrow morning from Munich to Hamburg’

U: Ja
‘Yes’

S: Ich habe mehere Verbindungen gefunden. Nach Hamburg
HBF, fahren Sie ab München um 7 Uhr. Ankunft in Hamburg
HBF um 15 Uhr, . . .
‘I found connections. From Munich departure 7, Arrival
Hamburg 15, . . . ’

Answer

U: Vielen Dank
‘Thank you’

S: Möchten Sie weitere Auskünfte?
‘Do you want further information?’

Closing

U: Nein danke
‘No thank you’

S: Auf wiederhören.
‘Have a nice trip.’
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intentions. They hoped to build an internal model of the user and thus to gain a deeper
insight into dialogue processes.

The ambition to model beliefs and intentions is appealing because it addresses
concerns and questions that often puzzle people: What does he want from me? What
does she mean? Knowing or extracting a user’s intentions would certainly help a
computer serve the user better. In addition, intention modeling recasts dialogue and
interaction into a framework more general than other formalisms.

However, such a model may prove difficult to implement. It is first a philosophi-
cal challenge to figure out and describe what the beliefs of individuals are. Second, if
beliefs or intentions could be completely described, it would be a second challenge to
box them into a program and run them with a computer. Fortunately, most dialogue
applications have a goal that is plainly prosaic, and simplifications can be made. We
describe now a classical representation of user modeling introduced by Allen and
Perrault (1980).

15.6.1 Representing Mental States

The idea of conversational systems based on belief, desire, and intention is to model
the participants as processes – agents. The agents are human users as well as artificial
ones, and each agent has a specific knowledge and the desire to complete an action.
The agent’s core is a representation of their mental states, which uses predicates
aimed at describing their beliefs or knowledge spaces, and what they can do. Agents
are modeled using operators such as:

• want(A, X), which means that agent A wants to do X
• can_do(A, X), which means that agent A can do X
• believe(A, X), which means that agent A believes X
• know(A, X), which means that agent A knows X

Since beliefs are personal, that is, individual, the definition of truth is no longer
universal. For this reason, predicates have two arguments, the agent who is the be-
liever and the proposition that is believed or known. This nonuniversal logic is called
modal, and refers to the various modes of truth.

From these operators, some axioms can be derived such as:

(know(A, X), (X ⇒ Y)) ⇒ know(A, Y)
(believe(A, X), (X ⇒ Y)) ⇒ believe(A, Y)
(believe(A, X), X) ⇒ know(A, X)

Mental states can be different according to dialogue participants, whether they
involve human beings together or humans and machines. Let us suppose that a patron
goes to a restaurant, looks at the menu, and sees as main courses cassoulet, pytt i
panna, and Yorkshire pudding. Let us also suppose that the restaurant is running out
of cassoulet. When entering the restaurant, belief spaces of the patron and the waiter
are different (Table 15.13).

A short dialogue between the waiter and the patron when ordering the meal will
enable them to synchronize their belief spaces (Table 15.14).
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Table 15.13. Belief spaces.

Patron’s belief space Waiter’s belief space
∃x, cassoulet(x)
∃x, pytt_i_panna(x) ∃x, pytt_i_panna(x)
∃x, yorkshire_pudding(x) ∃x, yorkshire_pudding(x)

Patron: I feel like a cassoulet
Waiter: Sorry sir, we have no more of it.

Such an exchange is also called a grounding – that is, setting a common ground.
Grounding is central to dialogue system design. The user must be sure that beliefs
and knowledge are shared between her/him and the system. If not, misunderstanding
would creep into many exchanges.

Mutual beliefs can be expressed as believe(A, P) ∧ believe(B, P)
∧ believe(A, believe(B, P)) ∧ believe(B, believe(A, P)) ∧
believe(A, believe(B, believe(A, P))), etc. Such a infinite conjunc-
tion is denoted mutually_believe(A, B, P).

Mutual beliefs should not be explicitly listed all the time at the risk of being
tedious. Most of the time, the user knows that there is an artificial system behind
the box and expects something very specific from it. However, the system has to
make sure the user is aware of its knowledge and beliefs, for instance, using implicit
confirmation each time the user provides information.

Table 15.14. Belief spaces after dialogue.

Patron’s belief space Waiter’s belief space
∃x, pytt_i_panna(x) ∃x, pytt_i_panna(x)
∃x, yorkshire_pudding(x) ∃x, yorkshire_pudding(x)

Representing the corresponding beliefs and intentions using Prolog is straight-
forward (Tables 15.15 and 15.16)

Table 15.15. Beliefs in Prolog.

Patron’s belief space Waiter’s belief space
believe(patron(’Pierre’),
cassoulet(X))
believe(patron(’Pierre’),
pytt_i_panna(X))

believe(waiter(’Bill’),
pytt_i_panna(X))

believe(patron(’Pierre’),
yorkshire_pudding(X))

believe(waiter(’Bill’),
yorkshire_pudding(X))
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Table 15.16. Intentions in Prolog.

Patron’s intentions Waiter’s intentions
intend(patron(’Pierre’),
(cassoulet(X), order(X)))

intend(waiter(’Bill’),
take_order(X))

Finally, modal operators can be used to transcribe speech acts. For instance, the
act of informing can be associated to the operator inform(A, B, P) (A informs
B of P), which will be applied with the following preconditions and effects:

• preconditions: know(A, P), want(A, inform(A, B, P))
• effects: know(B, P)

The operator request(A, B, P) can be modeled as:

• preconditions: want(A, request(A, B, P)), believe(A, can_-
do(B, P))

• effects: believe(A, want(B, P))

15.6.2 The STRIPS Planning Algorithm

Mental state consistency is usually controlled using a planning algorithm. Planning
has been extensively studied, and we introduce here the STRIPS algorithm (Fikes
and Nilsson 1971, Nilsson 1998). STRIPS considers planning as a search problem
given an initial and a final state. It uses rules describing an action – corresponding
here to the operators – with preconditions and postconditions. Postconditions are
divided into an add and a delete list reflecting facts new to the world and facts to be
removed.

%strips_rule(+operator, +preconditions, +add_list,
% +delete_list).

strips_rule(inform(A, B, P), [know(A, P), want(A,
inform(A, B, P))], [believe(B, P)], []).

Mental states or world state are described by lists of facts. The apply/3 pred-
icate applies an operator to a State that results in a NewState, subtracting facts
to be deleted and adding facts to be added:

% apply(+Action, +State, -NewState)

apply(Action, State, NewState):-
strips_rule(Action, _, _, DeleteList),
subtract(State, DeleteList, TempState),
strips_rule(Action, _, AddList, _),
union(AddList, TempState, NewState).
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where subtract/3 and union/3 are predicates built-in in most Prologs. They
define set subtraction and union. subtract(+Set, +Delete, -Result)
deletes all elements of list Delete from list Set, resulting in Result.
union(+Set1, +Set2, -Result) makes the union of Set1 and Set2, re-
moving duplicates and resulting in Result.

STRIPS represents possible states as nodes of a graph (Fig. 15.3). Each node
consists of a list of facts. The actions enable movement from one node to another,
adding or deleting facts when the preconditions are met. Knowing an initial and a
final list of facts representing the initial state and the goal, the problem is stated as
finding the action plan that modifies the world, adding or deleting facts so that the
initial state is transformed into the final one. This is a search problem, where STRIPS
traverses a graph to find the plan actions as follows (Nilsson 1998, pp. 376–379).

• Repeat while Goals are not a subset of the current State,
1. Select a Goal from the Goals that is not already in the current State.
2. Find a STRIP rule whose Action adds Goal to the current State and

make sure that Action has not already been done.
3. Action may not be possible if the Preconditions are not met. There-

fore, use STRIPS to solve recursively Preconditions. This results in the
intermediary state 1 (InterState1).

4. Apply Action to add and delete facts from the intermediary state 1. This
results in the intermediary state 2 (InterState2).

5. Recursively solve the rest of Goals.

Initial state
[]

Intermediary state 1
(contains
Preconditions)

Intermediary state 2
(contains Goal)

Final state (con-
tains Goals)

Plan Action Plan

Fig. 15.3. The STRIPS schemata.

STRIPS in Prolog uses the initial state and the goals as inputs and produces
the final state and the plan, where the goals must be a subset of the final state. We
need some auxiliary variables to carry out the computation. The Prolog recursive
rule builds the Plan in a reverse order, adding the current Action to the head of
the list, and unifies it to the FinalPlan variable when the goal is satisfied. Prolog
also builds State, and unifies it to FinalState in a same way. To avoid possible
infinite loops when finding preconditions to an action, the rule keeps a copy of the
corresponding plan and prohibits the repetition of actions.

strips(Goals, InitState, FinState, Plan) :-
strips(Goals, InitState, [],[], FinState, RevPlan),
reverse(RevPlan, Plan).

% strips(+Goals, +State, +Plan, +PrecondPlan,
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% -FinalState, -FinalPlan)

strips(Goals, State, Plan, _, State, Plan) :-
subset(Goals, State).

strips(Goals, State, Plan, PrecondPlan, FinalState,
FinalPlan) :-

member(Goal, Goals), %Select a goal
\+ member(Goal, State),
strips_rule(Action, _, AddList, _), %Find an action
member(Goal, AddList),
\+ member(Action, PrecondPlan),

% Find preconditions
strips_rule(Action, Preconditions, _, _),
% Get the FirstPlan and InterState1
% to achieve preconditions
strips(Preconditions, State, Plan,

[Action | PrecondPlan], InterState1, FirstPlan),
% Apply Action to the world
apply(Action, InterState1, InterState2),
% From FirstPlan move forward
strips(Goals, InterState2, [Action | FirstPlan],

PrecondPlan, FinalState, FinalPlan).

15.6.3 Causality

Planning provides a good operation model for dialogue and for other discourse
phenomena such as causality. Causality occurs when some sentences are logically
chained and are part of a same demonstration. Consider, for instance, these sentences:

Hedgehogs are back. Caterpillars shiver.

The second sentence is a consequence of the first. Causality can be related to
a logical demonstration but also depends on time-ordered events. Causal rules rep-
resent specific events, which will result in certain facts or effects. Usually, they also
require preconditions. They can be expressed in Prolog using predicates whose struc-
ture is similar to:

causes(preconditions, event, effects).

As we can see, this is also closely related to planning. The causes predicate
means that if the preconditions are met, and if an event occurs, then we will
have effects.

Many sentences involve sequences of actions – plans – that are temporally
chained. For instance:

Phileas the hedgehog was thirsty. He went out to have a pint.
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These two sentences correspond to an action, which is followed by another, the
second one being a consequence of the first one. For both examples, discourse un-
derstanding can be restated as a plan recognition problem.

15.7 Further Reading

Speech acts theory in dialogue is mostly known from the works of Austin (1962) and
Searle (1969, 1979), although Bühler (1934) pioneered it. Searle and Vanderveken
(1985) describe a logical model of illocutionary acts as well as a list of English verbs
classified according to Searle’s ontology. Vanderveken (1988) expands this work to
French verbs. Foundations of belief and intention modeling in dialogue are due to
Hintikka (1962). Carberry (1990) provides accounts to plan recognition in dialogue.

EVAR and the SUNDIAL projects have been a source of valuable research and
publications about spoken dialogue processing. Bilange (1992) gives an excellent
overview of dialogue processing techniques and application examples. Other works
include those of Andry (1992), Mast (1993), Eckert (1996), and Sagerer (1990).
The TRAINS project (Allen et al. 1995) is another example of elaborate dialogue
processing. Many applications, such as train reservation systems, are now available
commercially.

Planning includes a large number of applications and has spurred many algo-
rithms. In computational linguistics, it occurs within the frameworks of temporal
reasoning, intention modeling, and other forms of constraint-based reasoning. Bratko
(2001) gives a short introduction to planning and a collection of Prolog programs.
Russell and Norvig (2003) provides another introduction to planning.

Exercises

15.1. Write a dialogue program using Prolog clauses – no DCG rules – asking a
couple of questions and accepting yes or no answers only. Collect all the answers
and print them out at the end of the session.

15.2. Write a dialogue program using Prolog clauses – no DCG rules – reproducing
the dialogue of Fig. 15.1. Collect all the answers and print them out at the end of the
session.

15.3. Write verbs in a language you know corresponding to Searle’s ontology of illo-
cutionary classes: assertives, directives, commissives, declaratives, and expressives.

15.4. Rewrite Exercice 15.1 using SUNDIAL’s speech act predicates in Table 15.8.

15.5. Rewrite Exercice 15.2 using SUNDIAL’s speech act predicates in Table 15.8.

15.6. The DCG dialogue rules described in Sect. 15.5.3 are not robust. Make a par-
allel with sentence parsing and give examples where they would fail and why.
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15.7. Modify the rules of Sect. 15.5.3 so that they would never fail but recover and
start again.

15.8. Write an automaton in Prolog to model EVAR’s main phases accepting a legal
sequence of speech acts, such as [S_GREETING, U_REQ_INFO, ...].

15.9. Modify the EVAR automaton of Exercice 15.8 to be interactive. Design ques-
tions and messages from the system and possible answers from the user. Replace the
user and system turns with them.

15.10. Modify the EVAR automaton of Exercices 15.8 and 15.9 and use the SUN-
DIAL speech acts. Make the system work so that you have a more or less realistic
dialogue.
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An Introduction to Prolog

A.1 A Short Background

Prolog was designed in the 1970s by Alain Colmerauer and a team of researchers
with the idea – new at that time – that it was possible to use logic to represent knowl-
edge and to write programs. More precisely, Prolog uses a subset of predicate logic
and draws its structure from theoretical works of earlier logicians such as Herbrand
(1930) and Robinson (1965) on the automation of theorem proving.

Prolog was originally intended for the writing of natural language processing ap-
plications. Because of its conciseness and simplicity, it became popular well beyond
this domain and now has adepts in areas such as:

• Formal logic and associated forms of programming
• Reasoning modeling
• Database programming
• Planning, and so on.

This chapter is a short review of Prolog. In-depth tutorials include: in English,
Bratko (2001), Clocksin and Mellish (2003), Covington et al. (1997), Sterling and
Shapiro (1994); in French, Giannesini et al. (1985); and in German, Bauman (1991).
Boizumault (1988, 1993) contain a didactical implementation of Prolog in Lisp. Pro-
log foundations rest on first-order logic. Apt (1997), Burke and Foxley (1996), De-
lahaye (1986), and Lloyd (1987) examine theoretical links between this part of logic
and Prolog.

Colmerauer started his work at the University of Montréal, and a first version of
the language was implemented at the University of Marseilles in 1972. Colmerauer
and Roussel (1996) tell the story of the birth of Prolog, including their try-and-fail
experimentation to select tractable algorithms from the mass of results provided by
research in logic.

In 1995, the International Organization for Standardization (ISO) published a
standard on the Prolog programming language. Standard Prolog (Deransart et al.
1996) is becoming prevalent in the Prolog community and most of the available
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implementations now adopt it, either partly or fully. Unless specifically indicated,
descriptions in this chapter conform to the ISO standard, and examples should run
under any Standard Prolog implementation.

A.2 Basic Features of Prolog

A.2.1 Facts

Facts are statements that describe object properties or relations between objects. Let
us imagine we want to encode that Ulysses, Penelope, Telemachus, Achilles, and
others are characters of Homer’s Iliad and Odyssey. This translates into Prolog facts
ended with a period:

character(priam, iliad).
character(hecuba, iliad).
character(achilles, iliad).
character(agamemnon, iliad).
character(patroclus, iliad).
character(hector, iliad).
character(andromache, iliad).
character(rhesus, iliad).
character(ulysses, iliad).
character(menelaus, iliad).
character(helen, iliad).

character(ulysses, odyssey).
character(penelope, odyssey).
character(telemachus, odyssey).
character(laertes, odyssey).
character(nestor, odyssey).
character(menelaus, odyssey).
character(helen, odyssey).
character(hermione, odyssey).

Such a collection of facts, and later, of rules, makes up a database. It transcribes
the knowledge of a particular situation into a logical format. Adding more facts to
the database, we express other properties, such as the gender of characters:

% Male characters % Female characters

male(priam). female(hecuba).
male(achilles). female(andromache).
male(agamemnon). female(helen).
male(patroclus). female(penelope).
male(hector).
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male(rhesus).
male(ulysses).
male(menelaus).
male(telemachus).
male(laertes).
male(nestor).

or relationships between characters such as parentage:

% Fathers % Mothers
father(priam, hector). mother(hecuba, hector).
father(laertes,ulysses). mother(penelope,telemachus).
father(atreus,menelaus). mother(helen, hermione).
father(menelaus, hermione).
father(ulysses, telemachus).

Finally, would we wish to describe kings of some cities and their parties, this
would be done as:

king(ulysses, ithaca, achaean).
king(menelaus, sparta, achaean).
king(nestor, pylos, achaean).
king(agamemnon, argos, achaean).
king(priam, troy, trojan).
king(rhesus, thrace, trojan).

From these examples, we understand that the general form of a Prolog fact is:
relation(object1, object2, ..., objectn). Symbols or names rep-
resenting objects, such as ulysses or penelope, are called atoms. Atoms are
normally strings of letters, digits, or underscores “_”, and begin with a lowercase
letter. An atom can also be a string beginning with an uppercase letter or includ-
ing white spaces, but it must be enclosed between quotes. Thus ’Ulysses’ or
’Pallas Athena’ are legal atoms.

In logic, the name of the symbolic relation is the predicate, the objects
object1, object2, . . . , objectn involved in the relation are the arguments,
and the numbern of the arguments is the arity. Traditionally, a Prolog predicate is in-
dicated by its name and arity: predicate/arity, for example, character/2,
king/3.

A.2.2 Terms

In Prolog, all forms of data are called terms. The constants, i.e., atoms or numbers,
are terms. The fact king(menelaus, sparta, achaean) is a compound
term or a structure, that is, a term composed of other terms – subterms. The argu-
ments of this compound term are constants. They can also be other compound terms,
as in
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character(priam, iliad, king(troy, trojan)).
character(ulysses, iliad, king(ithaca, achaean)).
character(menelaus, iliad, king(sparta, achaean)).

where the arguments of the predicate character/3 are two atoms and a com-
pound term.

It is common to use trees to represent compound terms. The nodes of a tree are
then equivalent to the functors of a term. Figure A.1 shows examples of this.

Terms Graphical representations

male(ulysses) male

ulysses

father(ulysses, telemachus) father

ulysses telemachus

character(ulysses, odyssey,
king(ithaca, achaean))

character

ulysses odyssey king

ithaca achaean

Fig. A.1. Graphical representations of terms.

Syntactically, a compound term consists of a functor – the name of the re-
lation – and arguments. The leftmost functor of a term is the principal functor.
A same principal functor with a different arity corresponds to different predicates:
character/3 is thus different from character/2. A constant is a special case
of a compound term with no arguments and an arity of 0. The constant abc can thus
be referred to as abc/0.
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A.2.3 Queries

A query is a request to prove or retrieve information from the database, for example,
if a fact is true. Prolog answers yes if it can prove it, that is, here if the fact is in
the database, or no if it cannot: if the fact is absent. The question Is Ulysses a male?
corresponds to the query:

Query typed by the user

?- male(ulysses).
Answer from the Prolog engine

Yes

which has a positive answer. A same question with Penelope would give:

?- male(penelope).
No

because this fact is not in the database.
The expressions male(ulysses) or male(penelope) are goals to prove.

The previous queries consisted of single goals. Some questions require more goals,
such as Is Menelaus a male and is he the king of Sparta and an Achaean?, which
translates into:

?- male(menelaus), king(menelaus, sparta, achaean).
Yes

where “,” is the conjunction operator. It indicates that Prolog has to prove both
goals. The simple queries have one goal to prove, while the compound queries are
a conjunction of two or more goals:

?- G1, G2, G3, ..., Gn.

Prolog proves the whole query by proving that all the goals G1 . . .Gn are true.

A.2.4 Logical Variables

The logical variables are the last kind of Prolog terms. Syntactically, variables be-
gin with an uppercase letter, for example, X, Xyz, or an underscore “_”. Logical
variables stand for any term: constants, compound terms, and other variables. A
term containing variables such as character(X, Y) can unify with a compat-
ible fact, such as character(penelope, odyssey), with the substitutions
X = penelope and Y = odyssey.

When a query term contains variables, the Prolog resolution algorithm searches
terms in the database that unify with it. It then substitutes the variables to the match-
ing arguments. Variables enable users to ask questions such as What are the charac-
ters of the Odyssey?
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The variable The query

?- character(X, odyssey).
The Prolog answer

X = ulysses

Or What is the city and the party of king Menelaus? etc.

?- king(menelaus, X, Y).
X = sparta, Y = achaean

?- character(menelaus, X, king(Y, Z)).
X = iliad, Y = sparta, Z = achaean

?- character(menelaus, X, Y).
X = iliad, Y = king(sparta, achaean)

When there are multiple solutions, Prolog considers the first fact to match the
query in the database. The user can type “;” to get the next answers until there is no
more solution. For example:

The variable The query

?- male(X). Prolog answers, unifying X with a value

X = priam ; The user requests more answers, typing a semicolon

X = achilles ;

... Prolog proposes more solutions
No Until there are no more matching facts in the database

A.2.5 Shared Variables

Goals in a conjunctive query can share variables. This is useful to constrain argu-
ments of different goals to have a same value. To express the question Is the king
of Ithaca also a father? in Prolog, we use the conjunction of two goals king(X,
ithaca, Y) and father(X, Z), where the variable X is shared between goals:

?- king(X, ithaca, Y), father(X, Z).
X = ulysses, Y = achaean, Z = telemachus

In this query, we are not interested by the name of the child although Prolog
responds with Z = telemachus. We can indicate to Prolog that we do not need
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to know the values of Y and Z using anonymous variables. We then replace Y
and Z with the symbol “_”, which does not return any value:

?- king(X, ithaca, _), father(X, _).
X = ulysses

A.2.6 Data Types in Prolog

To sum up, every data object in Prolog is a term. Terms divide into atomic terms,
variables, and compound terms (Fig. A.2).

Terms

Atomic terms
(Constants)

Variables Compound terms
(Structures)

Atoms Numbers

Integers Floating point 
numbers

Fig. A.2. Kinds of terms in Prolog.

Syntax of terms may vary according to Prolog implementations. You should con-
sult reference manuals for their specific details. Here is a list of simplified conven-
tions from Standard Prolog (Deransart et al. 1996):

• Atoms are sequences of letters, numbers, and/or underscores beginning with a
lowercase letter, as ulysses, iSLanD3, king_of_Ithaca.

• Some single symbols, called solo characters, are atoms: ! ;
• Sequences consisting entirely of some specific symbols or graphic characters are

atoms: + - * / ˆ < = > ˜ : . ? @ # $ & \ ‘
• Any sequence of characters enclosed between single quotes is also an atom, as

’king of Ithaca’. A quote within a quoted atom must be double quoted:
’I”m’

• Numbers are either decimal integers, as -19, 1960, octal integers when pre-
ceded by 0o, as 0o56, hexadecimal integers when preceded by 0x, as 0xF4, or
binary integers when preceded by 0b, as 0b101.

• Floating-point numbers are digits with a decimal point, as 3.14, -1.5. They
may contain an exponent, as 23E-5 (23 10−5) or -2.3e5 (2.3 10−5).

• The ASCII numeric value of a character x is denoted 0’x, as 0’a (97), 0’b
(98), etc.
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• Variables are sequences of letters, numbers, and/or underscores beginning with
an uppercase letter or the underscore character.

• Compound terms consist of a functor, which must be an atom, followed immedi-
ately by an opening parenthesis, a sequence of terms separated by commas, and
a closing parenthesis.

Finally, Prolog uses two types of comments:

• Line comments go from the “%” symbol to the end of the line:
% This is a comment

• Multiline comments begin with a “/*” and end with a “*/”:
/*
this
is
a comment */

A.2.7 Rules

Rules enable to derive a new property or relation from a set of existing ones. For
instance, the property of being the son of somebody corresponds to either the prop-
erty of having a father and being a male, or having a mother and being a male.
Accordingly, the Prolog predicate son(X, Y) corresponds either to conjunction
male(X), father(Y, X), or to male(X), mother(Y, X). Being a son
admits thus two definitions that are transcribed as two Prolog rules:

son(X, Y) :- father(Y, X), male(X).
son(X, Y) :- mother(Y, X), male(X).

More formally, rules consist of a term called the head, followed by symbol “:-”,
read if, and a conjunction of goals. They have the form:

HEAD :- G1, G2, G3, ... Gn.

where the conjunction of goals is the body of the rule. The head is true if the body
is true. Variables of a rule are shared between the body and the head. Rules can be
queried just like facts:

?- son(telemachus, Y).
Y = ulysses;
Y = penelope;
No

Rules are a flexible way to deduce new information from a set of facts. The
parent/2 predicate is another example of a family relationship that is easy to
define using rules. Somebody is a parent if s/he is either a mother or a father:

parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).
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Rules can call other rules as with grandparent/2. A grandparent is the parent
of a parent and is defined in Prolog as

grandparent(X, Y) :- parent(X, Z), parent(Z, Y).

where Z is an intermediate variable shared between goals. It enables us to find the
link between the grandparent and the grandchild: a mother or a father.

We can generalize the grandparent/2 predicate and write ancestor/2.
We use two rules, one of them being recursive:

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

This latter pattern is quite common of Prolog rules. One or more rules express a
general case using recursion. Another set of rules or facts describes simpler condi-
tions without recursion. They correspond to boundary cases and enable the recursion
to terminate.

A query about the ancestors of Hermione yields:

?- ancestor(X, hermione).
X= menelaus;
X = helen;
X = atreus;
No

Facts and rules are also called clauses. A predicate is defined by a set of clauses
with the same principal functor and arity. Facts are indeed special cases of rules:
rules that are always true and relation(X, Y) is equivalent to relation(X,
Y) :- true, where true/0 is a built-in predicate that always succeeds. Most
Prolog implementations require clauses of the same name and arity to be grouped
together.

In the body of a rule, the comma “,” represents a conjunction of goals. It is also
possible to use a disjunction with the operator “;”. Thus:

A :-
B
;
C.

is equivalent to

A :- B.
A :- C.

However, “;” should be used scarcely because it impairs somewhat the legibility
of clauses and programs. The latter form is generally better.
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A.3 Running a Program

The set of facts and rules of a file makes up a Prolog text or program. To run it and
use the information it contains, a Prolog system has to load the text and add it to the
current database in memory. Once Prolog is launched, it displays a prompt symbol
“?-” and accepts commands from the user.

Ways to load a program are specific to each Prolog implementation. A user
should look them up in the reference manual because the current standard does
not define them. There are, however, two commands drawn from the Edinburgh
Prolog tradition (Pereira 1984) implemented in most systems: consult/1 and
reconsult/1.

The predicate consult/1 loads a file given as an argument and adds all the
clauses of the file to the current database in memory:

?- consult(file_name).

file_name must be an atom as, for example,

?- consult(’odyssey.pl’).

It is also possible to use the shortcut:

?- [file_name].

to load one file, for example,

?- [’odyssey.pl’].

or more files:

?- [file1, file2].

The predicate reconsult/1 is a variation of consult. Usually, a program-
mer writes a program, loads it using consult, runs it, debugs it, modifies the pro-
gram, and reloads the modified program until it is correct. While consult adds the
modified clauses to the old ones in the database, reconsult updates the database
instead. It loads the modified file and replaces clauses of existing predicates in the
database by new clauses contained in the file. If a predicate is in the file and not
in the database, reconsult simply adds its clauses. In some Prolog systems,
reconsult does not exist, and consult discards existing clauses to replace them
by the new definition from the loaded file. Once a file is loaded, the user can run
queries.

The listing/0 built-in predicate displays all the clauses in the database, and
listing/1, the definition of a specific predicate. The listing/1 argument for-
mat is either Predicate or Predicate/Arity:

?- listing(character/2).
character(priam, iliad).
character(hecuba, iliad).
character(achilles, iliad).
...
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A program can also include directives, i.e., predicates to run at load time. A
directive is a rule without a head: a term or a conjunction of terms with a “:-”
symbol to its left-hand side:

:- predicates_to_execute.

Directives are run immediately as they are encountered. If a directive is to be
executed once the program is completely loaded, it must occur at the end of the file.

Finally, halt/0 quits Prolog.

A.4 Unification

A.4.1 Substitution and Instances

When Prolog answers a query made of a term T containing variables, it applies a sub-
stitution. This means that Prolog replaces variables in T by values so that it proves
T to be true. The substitution {X = ulysses, Y = odyssey} is a solu-
tion to the query character(X, Y) because the fact character(ulysses,
odyssey) is in the database. In the same vein, the substitution {X = sparta,
Y = achaean} is a solution to the query king(menelaus, X, Y).

More formally, a substitution is a set {X1 = t1, X2 = t2, ..., Xn =
tn}, where Xi is a variable and ti is a term. Applying a substitution σ to a term T is
denoted Tσ and corresponds to the replacement of all the occurrences of variable Xi
with term ti in T for i ranging from 1 to n. Applying the (meaningless) substitution
σ1 = {X = ulysses} to the term T1 = king(menelaus, X, Y) yields
T1’ = king(menelaus, ulysses, Y). Applying the substitution σ2 = {X
= iliad, Y = king(sparta, achaean)} to the term T2 = charac-
ter(menelaus, X, Y) yields T2’ = character(menelaus, iliad,
king(sparta, achaean)).

A term T ′ resulting from a substitution Tσ is an instance of T . More generally,
T ′ is an instance of T if there is a substitution so that T ′ = Tσ. If T ′ is an instance
of T , then T is more general than T ′. Terms can be ordered according to possible
compositions of instantiations. For example, character(X, Y) is more general
than character(ulysses, odyssey); king(X, Y, Z) is more general
than king(menelaus, Y, Z), which is more general than king(menelaus,
Y, achaean), which is itself more general than king(menelaus, sparta,
achaean).

A substitution mapping a set of variables onto another set of variables such as σ
= {X = A, Y = B} onto term character(X, Y) is a renaming substitution.
Initial and resulting terms character(X, Y) and character(A, B) are said
to be alphabetical variants. Finally, a ground term is a term that contains no vari-
able such as king(menelaus, sparta, achaean).
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A.4.2 Terms and Unification

To equate two terms, T1 and T2, Prolog uses unification, which substitutes variables
in the terms so that they are identical. Unification is a logical mechanism that carries
out a two-way matching, from T1 to T2 and the reverse, and merges them into a
common term. Prolog unifies terms to solve equations such as T1 = T2. It also uses
unification in queries to match a goal or a subgoal to the head of the rule. Figure A.3
shows the intuitive unification of terms

T1 = character(ulysses, Z, king(ithaca, achaean))

and

T2 = character(ulysses, X, Y)

through a graphical superposition.

character

ulysses Z king

ithaca achaean

character

ulysses X Y

=

Fig. A.3. Unification of terms: a graphical interpretation.

The superposition of the two terms requires finding an instance common to both
terms T1 and T2. This can be restated as there exist two substitutions σ1 and σ2 such
that T1σ1 = T2σ2. A unifier is a substitution making T1 and T2 identical: T1σ =
T2σ. In our example, there is an infinite number of possible unifiers. Candidates
include the substitution σ = {Z = c(a), X = c(a), Y = king(ithaca,
achaean)}, which yields the common instance:character(ulysses,c(a),
king(ithaca, achaean)). They also include σ = {Z = female, Z =
female, Y = king(ithaca, achaean)}, which yields another common
instance: character(ulysses, female, king(ithaca, achaean)),
etc.

Intuitively, these two previous unifiers are special cases of the unification of T1
and T2. In fact, all the unifiers are instances of the substitution σ = {X = Z, Y =
king(ithaca, achaean)}, which is the most general unifier or MGU.

Real Prolog systems display the unification of T1 and T2 in a slightly different
way:

?- character(ulysses, Z, king(ithaca, achaean)) =
character(ulysses, X, Y).
X = _G123, Y = king(ithaca, achaean), Z = _G123
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where _Gxyz are variable names internal to the Prolog system.

A.4.3 The Herbrand Unification Algorithm

The reference algorithm to unify terms is due to Herbrand (Herbrand 1930, Martelli
and Montanari 1982). It takes the two terms to unify as input. The output is either a
failure if terms do not unify or the MGU – σ.

The algorithm initializes the substitution to the empty set and pushes terms on
a stack. The main loop consists in popping terms, comparing their functors, and
pushing their arguments on the stack. When a variable is found, the corresponding
substitution is added to σ (Sterling and Shapiro 1994, Deransart et al. 1996).

• Initialization step
Initialize σ to {}
Initialize failure to false
Push the equation T1 = T2 on the stack

• Loop
repeat {

pop x = y from the stack
if x is a constant and x == y. Continue.
else if x is a variable and x does not appear in y.

Replace x with y in the stack and in σ. Add the substitution {x = y} to
σ.

else if x is a variable and x == y. Continue.
else if y is a variable and x is not a variable.

Push y = x on the stack.
else if x and y are compounds with x = f(x1, ..., xn) and y = f(y1, ..., yn).

Push on the stack xi = yi for i ranging from 1 to n.
else Set failure to true, and σ to {}. Break.

} until (stack �= ∅)

A.4.4 Example

Let us exemplify the Herbrand algorithm with terms: f(g(X, h(X, b)), Z)
and f(g(a, Z), Y). We will use a two-way stack: one for the left term and one
for the right term, and let us scan and push term arguments from right to left.

For the first iteration of the loop, x and y are compounds. After this iteration, the
stack looks like:

Left term of the stack (x) Right term of the stack (y)
g(X, h(X, b)) = g(a, Z)

Z = Y

with the substitution σ = {}.
The second iteration pops the top terms of the left and right parts of the stack.

The loop condition corresponds to compound terms again. The algorithm pushes the
arguments of left and right terms on the stack:
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Left term of the stack (x) Right term of the stack (y)
X = a

h(X, b) = Z
Z = Y

with the substitution σ = {}.
The third iteration pops the equationX = a. The algorithm adds this substitution

to σ and carries out the substitution in the stack:

Left term of the stack (x) Right term of the stack (y)
h(X, b) ∼ h(a, b) = Z

Z = Y

with the substitution σ = {X = a}.
The next iteration pops h(a, b) = Z, swaps the left and right terms, and

yields:

Left term of the stack (x) Right term of the stack (y)
Z = h(a, b)
Z = Y

The fifth iteration pops Z = h(a, b) and yields:

Left term of the stack (x) Right term of the stack (y)
Z ∼ h(a, b) = Y

with the substitution σ = {X = a, Z = h(a, b)}.
Finally, we get the MGU σ = {X = a, Z = h(a, b), Y = h(a, b)}

that yields the unified term f(g(a, h(a, b)), h(a, b)).

A.4.5 The Occurs-Check

The Herbrand algorithm specifies that variables X or Y must not appear – occur – in
the right or left member of the equation to be a successful substitution. The unifica-
tion of X and f(X) should then fail because f(X) contains X.

However, most Prolog implementations do not check the occurrence of variables
to keep the unification time linear on the size of the smallest of the terms being
unified (Pereira 1984). Thus, the unification X = f(X) unfortunately succeeds re-
sulting in a stack overflow. The term f(X) infinitely replaces X in σ, yielding X =
f(f(X)), f(f(f(X))), f(f(f(f(X)))), etc., until the memory is exhausted.
It results into a system crash with many Prologs.

Although theoretically better, a unification algorithm that would implement an
occurs-check is not necessary most of the time. An experienced programmer will not
write unification equations with a potential occurs-check problem. That is why Pro-
log systems compromised the algorithm purity for speed. Should the occurs-check be
necessary, Standard Prolog provides the unify_with_occurs_check/2 built-
in predicate:
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?- unify_with_occurs_check(X, f(X)).
No

?- unify_with_occurs_check(X, f(a)).
X = f(a)

A.5 Resolution

A.5.1 Modus Ponens

The Prolog resolution algorithm is based on the modus ponens form of inference that
stems from traditional logic. The idea is to use a general rule – the major premise –
and a specific fact – the minor premise – like the famous:

All men are mortal
Socrates is a man

to conclude, in this case, that

Socrates is mortal

Table A.1 shows the modus ponens in the classical notation of predicate logic
and in Prolog.

Table A.1. The modus ponens notation in formal logic and its Prolog equivalent.

Formal notation Prolog notation
Facts α man(’Socrates’).
Rules α ⇒ β mortal(X) :- man(X).
Conclusion β mortal(’Socrates’).

Prolog runs a reversed modus ponens. Using symbols in Table A.1, Prolog tries
to prove that a query (β) is a consequence of the database content (α, α ⇒ β). Using
the major premise, it goes from β to α, and using the minor premise, from α to true.
Such a sequence of goals is called a derivation. A derivation can be finite or infinite.

A.5.2 A Resolution Algorithm

Prolog uses a resolution algorithm to chain clauses mechanically and prove a query.
This algorithm is generally derived from Robinson’s resolution principle (1965),
known as the SLD resolution. SLD stands for “linear resolution” with a “selec-
tion function” for “definite clauses” (Kowalski and Kuehner 1971). Here “definite
clauses” are just another name for Prolog clauses.
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The resolution takes a program – a set of clauses, rules, and facts – and a query
Q as an input (Sterling and Shapiro 1994, Deransart et al. 1996). It considers a con-
junction of current goals to prove, called the resolvent, that it initializes with Q. The
resolution algorithm selects a goal from the resolvent and searches a clause in the
database so that the head of the clause unifies with the goal. It replaces the goal with
the body of that clause. The resolution loop replaces successively goals of the resol-
vent until they all reduce to true and the resolvent becomes empty. The output is then
a success with a possible instantiation of the query goal Q’, or a failure if no rule
unifies with the goal. In case of success, the final substitution, σ, is the composition
of all the MGUs involved in the resolution restricted to the variables of Q. This type
of derivation, which terminates when the resolvent is empty, is called a refutation.

• Initialization
Initialize Resolvent to Q, the initial goal of the resolution algorithm.
Initialize σ to {}
Initialize failure to false

• Loop with Resolvent = G1, G2, ..., Gi, ..., Gm

while (Resolvent �= ∅) {
1. Select the goal Gi ∈ Resolvent;
2. If Gi == true, delete it and continue;
3. Select the rule H :- B1, ..., Bn in the database such that Gi and H

unify with the MGU θ. If there is no such a rule then set failure to
true; break;

4. Replace Gi with B1, ..., Bn in Resolvent
% Resolvent = G1,...,Gi−1, B1,...,Bn, Gi+1,..., Gm

5. Apply θ to Resolvent and to Q;
6. Compose σ with θ to obtain the new current σ;

}

Each goal in the resolvent – i.e., in the body of a rule – must be different from a
variable. Otherwise, this goal must be instantiated to a nonvariable term before it is
called. The call/1 built-in predicate then executes it as in the rule:

daughter(X, Y) :-
mother(Y, X), G = female(X), call(G).

where call(G) solves the goal G just as if it were female(X). In fact, Prolog
automatically inserts call/1 predicates when it finds that a goal is a variable. G is
thus exactly equivalent to call(G), and the rule can be rewritten more concisely
in:

daughter(X, Y) :-
mother(Y, X), G = female(X), G.

A.5.3 Derivation Trees and Backtracking

The resolution algorithm does not tell us how to select a goal from the resolvent. It
also does not tell how to select a clause in the program. In most cases, there is more
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than one choice. The selection order of goals is of no consequence because Prolog
has to prove all of them anyway. In practice, Prolog considers the leftmost goal of the
resolvent. The selection of the clause is more significant because some derivations
lead to a failure although a query can be proved by other derivations. Let us show
this with the program:

p(X) :- q(X), r(X).
q(a).
q(b).
r(b).
r(c).

and the query ?- p(X).
Let us compute the possible states of the resolvent along with the resolution’s

iteration count. The first resolvent (R1) is the query itself. The second resolvent (R2)
is the body of p(X): q(X), r(X); there is no other choice. The third resolvent
(R3) has two possible values because the leftmost subgoal q(X) can unify either
with the facts q(a) or q(b). Subsequently, according to the fact selected and the
corresponding substitution, the derivation succeeds or fails (Fig. A.4).

R1: p(X)??y
R2: q(X), r(X)

σ ={X = a}↙ ↘ σ ={X = b}
R3: q(a), r(a) q(b), r(b)??y

??y
R4: true, r(a) true, r(b)

failure
??y

R5: true
success

Fig. A.4. The search tree and successive values of the resolvent.

The Prolog resolution can then be restated as a search, and the picture of succes-
sive states of the resolvent as a search tree. Now how does Prolog select a clause?
When more than one is possible, Prolog could expand the resolvent as many times
as there are clauses. This strategy would correspond to a breadth-first search. Al-
though it gives all the solutions, this is not the one Prolog employs because would be
unbearable in terms of memory.

Prolog uses a depth-first search strategy. It scans clauses from top to bottom and
selects the first one to match the leftmost goal in the resolvent. This sometimes leads
to a subsequent failure, as in our example, where the sequence of resolvents is first
p(X), then the conjunction q(X), r(X), after that q(a), r(a), and finally the
goal r(a), which is not in the database. Prolog uses a backtracking mechanism then.
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During a derivation, Prolog keeps a record of backtrack points when there is a pos-
sible choice, that is, where more than one clause unifies with the current goal. When
a derivation fails, Prolog backs up to the last point where it could select another
clause, undoes the corresponding unification, and proceeds with the next possible
clause. In our example, it corresponds to resolvent R2 with the second possible uni-
fication: q(b). The resolvent R3 is then q(b), r(b), which leads to a success.
Backtracking explores all possible alternatives until a solution is found or it reaches
a complete failure.

However, although the depth-first strategy enables us to explore most search
trees, it is only an approximation of a complete resolution algorithm. In some cases,
the search path is infinite, even when a solution exists. Consider the program:

p(X) :- p(X), q(X).
p(a).
q(a).

where the query p(a) does not succeed because of Prolog’s order of rule selection.
Fortunately, most of the time there is a workaround. Here it suffices to invert the
order of the subgoals in the body of the rule.

A.6 Tracing and Debugging

Bugs are programming errors, that is, when a program does not do what we expect
from it. To isolate and remove them, the programmer uses a debugger. A debug-
ger enables programmers to trace the goal execution and unification step by step. It
would certainly be preferable to write bug-free programs, but to err is human. And
debugging remains, unfortunately, a frequent part of program development.

The Prolog debugger uses an execution model describing the control flow of a
goal (Fig. A.5). It is pictured as a box representing the goal predicate with four ports,
where:

• The Call port corresponds to the invocation of the goal.
• If the goal is satisfied, the execution comes out through the Exit port with a

possible unification.
• If the goal fails, the execution exits through the Fail port.
• Finally, if a subsequent goal fails and Prolog backtracks to try another clause of

the predicate, the execution re-enters the box through the Redo port.

p(X)
Exit 

Redo 

Call 

Fail 

Fig. A.5. The execution model of Prolog.
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The built-in predicate trace/0 launches the debugger and notrace/0 stops
it. The debugger may have different commands according to the Prolog system you
are using. Major ones are:

• creep to proceed through the execution ports. Simply type return to creep.
• skip to skip a goal giving the result without examining its subgoals. (type s to

skip).
• retry starts the current goal again from an exit or redo port (type r).
• fail makes a current goal to fail (type f).
• abort to quit the debugger (type a).

Figure A.6 represents the rule p(X) :- q(X), r(X), where the box corre-
sponding to the head encloses a chain of subboxes picturing the conjunction of goals
in the body. The debugger enters goal boxes using the creep command.

Exit 

Redo 

Call 

Fail 

r(X)F

C E 

R 
q(X)

E 

R F

C 

p(X)

Fig. A.6. The execution box representing the rule p(X) :- q(X), r(X).

As an example, let us trace the program:

p(X) :- q(X), r(X).
q(a).
q(b).
r(b).
r(c).

with the query p(X).

?- trace.
Yes
?- p(X).

Call: ( 7) p(_G106) ? creep
Call: ( 8) q(_G106) ? creep
Exit: ( 8) q(a) ? creep
Call: ( 8) r(a) ? creep
Fail: ( 8) r(a) ? creep
Redo: ( 8) q(_G106) ? creep
Exit: ( 8) q(b) ? creep
Call: ( 8) r(b) ? creep
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Exit: ( 8) r(b) ? creep
Exit: ( 7) p(b) ? creep

X = b

A.7 Cuts, Negation, and Related Predicates

A.7.1 Cuts

The cut predicate, written “!”, is a device to prune some backtracking alternatives.
It modifies the way Prolog explores goals and enables a programmer to control the
execution of programs. When executed in the body of a clause, the cut always suc-
ceeds and removes backtracking points set before it in the current clause. Figure A.7
shows the execution model of the rule p(X) :- q(X), !, r(X) that contains
a cut.

Exit 

Redo 

Call

Fail

r(X)
F

C E

R 
q(X)

E 

RF

C

!
EC 

p(X)

Fig. A.7. The execution box representing the rule p(X) :- q(X), !, r(X).

Let us suppose that a predicate P consists of three clauses:

P :- A1, ..., Ai, !, Ai+1, ..., An.
P :- B1, ..., Bm.
P :- C1, ..., Cp.

Executing the cut in the first clause has the following consequences:

1. All other clauses of the predicate below the clause containing the cut are pruned.
That is, here the two remaining clauses of P will not be tried.

2. All the goals to the left of the cut are also pruned. That is, A1, ..., Ai will
no longer be tried.

3. However, it will be possible to backtrack on goals to the right of the cut.

P :- A1, ..., Ai, !, Ai+1, ..., An.
P :- B1, ..., Bm.
P :- C1, ..., Cp.

Cuts are intended to improve the speed and memory consumption of a program.
However, wrongly placed cuts may discard some useful backtracking paths and solu-
tions. Then, they may introduce vicious bugs that are often difficult to track. There-
fore, cuts should be used carefully.
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An acceptable use of cuts is to express determinism. Deterministic predicates
always produce a definite solution; it is not necessary then to maintain backtracking
possibilities. A simple example of it is given by the minimum of two numbers:

minimum(X, Y, X) :- X < Y.
minimum(X, Y, Y) :- X >= Y.

Once the comparison is done, there is no means to backtrack because both clauses
are mutually exclusive. This can be expressed by adding two cuts:

minimum(X, Y, X) :- X < Y, !.
minimum(X, Y, Y) :- X >= Y, !.

Some programmers would rewrite minimum/3 using a single cut:

minimum(X, Y, X) :- X < Y, !.
minimum(X, Y, Y).

The idea behind this is that once Prolog has compared X and Y in the first clause,
it is not necessary to compare them again in the second one. Although the latter
program may be more efficient in terms of speed, it is obscure. In the first version
of minimum/3, cuts respect the logical meaning of the program and do not impair
its legibility. Such cuts are called green cuts. The cut in the second minimum/3
predicate is to avoid writing a condition explicitly. Such cuts are error-prone and are
called red cuts. Sometimes red cuts are crucial to a program but when overused, they
are a bad programming practice.

A.7.2 Negation

A logic program contains no negative information, only queries that can be proven or
not. The Prolog built-in negation corresponds to a query failure: the program cannot
prove the query. The negation symbol is written “\+” or not in older Prolog systems:

• If G succeeds then \+ G fails.
• If G fails then \+ G succeeds.

The Prolog negation is defined using a cut:

\+(P) :- P, !, fail.
\+(P) :- true.

where fail/0 is a built-in predicate that always fails.
Most of the time, it is preferable to ensure that a negated goal is ground: all its

variables are instantiated. Let us illustrate it with the somewhat odd rule:

mother(X, Y) :- \+ male(X), child(Y, X).

and facts:
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child(telemachus, penelope).
male(ulysses).
male(telemachus).

The query

?- mother(X, Y).

fails because the subgoal male(X) is not ground and unifies with the fact
male(ulysses). If the subgoals are inverted:

mother(X, Y) :- child(Y, X), \+ male(X).

the term child(Y, X) unifies with the substitution X = penelope and Y
= telemachus, and since male(penelope) is not in the database, the goal
mother(X, Y) succeeds.

Predicates similar to “\+” include if-then and if-then-else constructs. If-then is
expressed by the built-in ’->’/2 operator. Its syntax is

Condition -> Action

as in

print_if_parent(X, Y) :-
(parent(X, Y) -> write(X), nl, write(Y), nl).

?- print_if_parent(X, Y).
penelope
telemachus

X = penelope, Y = telemachus

Just like negation, ’->’/2 is defined using a cut:

’->’(P, Q):- P, !, Q.

The if-then-else predicate is an extension of ’->’/2 with a second member to
the right. Its syntax is

Condition -> Then ; Else

If Condition succeeds, Then is executed, otherwise Else is executed.

A.7.3 The once/1 Predicate

The built-in predicate once/1 also controls Prolog execution. once(P) executes
P once and removes backtrack points from it. If P is a conjunction of goals as in the
rule:

A :- B1, B2, once((B3, ..., Bi)), Bi+1, ..., Bn.
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the backtracking path goes directly from Bi+1 to B2, skipping B3, ..., Bi. It is
necessary to bracket the conjunction inside once twice because its arity is equal to
one. A single level of brackets, as in once(B3, ..., Bi), would tell Prolog that
once/1 has an arity of i-3.

once(Goal) is defined as:

once(Goal) :- Goal, !.

A.8 Lists

Lists are data structures essential to many programs. A Prolog list is a sequence of an
arbitrary number of terms separated by commas and enclosed within square brackets.
For example:

• [a] is a list made of an atom.
• [a, b] is a list made of two atoms.
• [a, X, father(X, telemachus)] is a list made of an atom, a variable,

and a compound term.
• [[a, b], [[[father(X, telemachus)]]]] is a list made of two sub-

lists.
• [] is the atom representing the empty list.

Although it is not obvious from these examples, Prolog lists are compound terms
and the square bracketed notation is only a shortcut. The list functor is a dot: “./2”,
and [a, b] is equivalent to the term .(a,.(b,[])).

Computationally, lists are recursive structures. They consist of two parts: a head,
the first element of a list, and a tail, the remaining list without its first element. The
head and the tail correspond to the first and second argument of the Prolog list func-
tor. Figure A.8 shows the term structure of the list [a, b, c]. The tail of a list is
possibly empty as in .(c,[])).

.

.

.

[]

a

b

c

Fig. A.8. The term structure of the list [a, b, c].
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The notation “|” splits a list into its head and tail, and [H | T] is equivalent to
.(H, T). Splitting a list enables us to access any element of it and therefore it is a
very frequent operation. Here are some examples of its use:

?- [a, b] = [H | T].
H = a, T = [b]

?- [a] = [H | T].
H = a, T = []

?- [a, [b]] = [H | T].
H = a, T = [[b]]

?- [a, b, c, d] = [X, Y | T].
X = a, Y = b, T = [c, d]

?- [[a, b, c], d, e] = [H | T].
H = [a, b, c], T = [d, e]

The empty list cannot be split:

?- [] = [H | T].
No

A.9 Some List-Handling Predicates

Many applications require extensive list processing. This section describes some use-
ful predicates. Generally, Prolog systems provide a set of built-in list predicates.
Consult your manual to see which ones; there is no use in reinventing the wheel.

A.9.1 The member/2 Predicate

The member/2 predicate checks whether an element is a member of a list:

?- member(a, [b, c, a]).
Yes

?- member(a, [c, d]).
No

member/2 is defined as

member(X, [X | Y]). % Termination case
member(X, [Y | YS]) :- % Recursive case
member(X, YS).
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We could also use anonymous variables to improve legibility and rewrite mem-
ber/2 as

member(X, [X | _]).
member(X, [_ | YS]) :- member(X, YS).

member/2 can be queried with variables to generate elements member of a list,
as in:

?- member(X, [a, b, c]).
X = a ;
X = b ;
X = c ;
No

Or lists containing an element:

?- member(a, Z).
Z = [a | Y] ;
Z = [Y, a | X] ;
etc.

Finally, the query:

?- \+ member(X, L).

where X and L are ground variables, returns Yes if member(X, L) fails and No if
it succeeds.

A.9.2 The append/3 Predicate

The append/3 predicate appends two lists and unifies the result to a third argument:

?- append([a, b, c], [d, e, f], [a, b, c, d, e, f]).
Yes

?- append([a, b], [c, d], [e, f]).
No

?- append([a, b], [c, d], L).
L = [a, b, c, d]

?- append(L, [c, d], [a, b, c, d]).
L = [a, b]

?- append(L1, L2, [a, b, c]).
L1 = [], L2 = [a, b, c] ;
L1 = [a], L2 = [b, c] ;
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etc., with all the combinations.
append/3 is defined as

append([], L, L).
append([X | XS], YS, [X | ZS]) :-
append(XS, YS, ZS).

A.9.3 The delete/3 Predicate

The delete/3 predicate deletes a given element from a list. Its synopsis is:
delete(List, Element, ListWithoutElement). It is defined as:

delete([], _, []).
delete([E | List], E, ListWithoutE):-
!,
delete(List, E, ListWithoutE).

delete([H | List], E, [H | ListWithoutE]):-
H \= E,
!,
delete(List, E, ListWithoutE).

The three clauses are mutually exclusive, and the cuts make it possible to omit
the condition H \= E in the second rule. This improves the program efficiency but
makes it less legible.

A.9.4 The intersection/3 Predicate

The intersection/3 predicate computes the intersection of two sets represented
as lists: intersection(InputSet1, InputSet2, Intersection).

?- intersection([a, b, c], [d, b, e, a], L).
L = [a, b]

InputSet1 and InputSet2 should be without duplicates; otherwise
intersection/3 approximates the intersection set relatively to the first argu-
ment:

?- intersection([a, b, c, a], [d, b, e, a], L).
L = [a, b, a]

The predicate is defined as:

% Termination case
intersection([], _, []).
% Head of L1 is in L2
intersection([X | L1], L2, [X | L3]) :-
member(X, L2),
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!,
intersection(L1, L2, L3).

% Head of L1 is not in L2
intersection([X | L1], L2, L3) :-
\+ member(X, L2),
!,
intersection(L1, L2, L3).

As for delete/3, clauses of intersection/3 are mutually exclusive, and
the programmer can omit the condition \+ member(X, L2) in the third clause.

A.9.5 The reverse/2 Predicate

The reverse/2 predicate reverses the elements of a list. There are two classic
ways to define it. The first definition is straightforward but consumes much memory.
It is often called the naïve reverse:

reverse([],[]).
reverse([X | XS], YS] :-
reverse(XS,, RXS),
append(RX, [X], Y).

A second solution improves the memory consumption. It uses a third argument
as an accumulator.

reverse(X, Y) :-
reverse(X, [], Y).

reverse([], YS, YS).
reverse([X | XS], Accu, YS):-
reverse(XS, [X | Accu], YS).

A.9.6 The Mode of an Argument

The mode of an argument defines if it is typically an input (+) or an output (-). In-
puts must be instantiated, while outputs are normally uninstantiated. Some predicates
have multiple modes of use. We saw three modes for append/3:

• append(+List1, +List2, +List3),
• append(+List1, +List2, -List3), and
• append(-List1, -List2, +List3).

A question mark “?” denotes that an argument can either be instantiated or not.
Thus, the two first modes of append/3 can be compacted into append(+List1,
+List2, ?List3). The actual mode of append/3, which describes all possi-
bilities is, in fact, append(?List1, ?List2, ?List3). Finally, “@” indi-
cates that the argument is normally a compound term that shall remain unaltered.

It is a good programming practice to annotate predicates with their common
modes of use.
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A.10 Operators and Arithmetic

A.10.1 Operators

Prolog defines a set of prefix, infix, and postfix operators that includes the classical
arithmetic symbols: “+”, “-”, “*”, and “/”. The Prolog interpreter considers opera-
tors as functors and transforms expressions into terms. Thus, 2 * 3 + 4 * 2 is
equivalent to +(*(2, 3), *(4, 2)).

The mapping of operators onto terms is governed by rules of priority and classes
of associativity:

• The priority of an operator is an integer ranging from 1 to 1200. It enables us to
determine recursively the principal functor of a term. Higher-priority operators
will be higher in the tree representing a term.

• The associativity determines the bracketing of term A op B op C:
1. If op is left-associative, the term is read (A op B) op C;
2. If op is right-associative, the term is read A op (B op C).

Prolog defines an operator by its name, its specifier, and its priority. The specifier
is a mnemonic to denote the operator class of associativity and whether it is infixed,
prefixed, or postfixed (Table A.2).

Table A.2. Operator specifiers.

Operator Nonassociative Right-associative Left-associative
Infix xfx xfy yfx
Prefix fx fy –
Postfix xf – yf

Table A.3 shows the priority and specifier of predefined operators in Standard
Prolog.
It is possible to declare new operators using the directive:

:- op(+Priority, +Specifier, +Name).

A.10.2 Arithmetic Operations

The evaluation of an arithmetic expression uses the is/2 built-in operator. is/2
computes the value of the Expression to the right of it and unifies it with Value:

?- Value is Expression.

where Expression must be computable. Let us exemplify it. Recall first that “=”
does not evaluate the arithmetic expression:
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Table A.3. Priority and specifier of operators in Standard Prolog.

Priority Specifier Operators
1200 xfx :- -->
1200 fx :- ?-
1100 xfy ;
1050 xfy ->
1000 xfy ’,’
900 fy \+
700 xfx = \=
700 xfx == \== @< @=< @> @>=
700 xfx =..
700 xfx is =:= =\= < =< > >=
550 xfy :
500 yfx + - # /\ \/
400 yfx * / // rem mod << >>
200 xfx **
200 xfy ˆ
200 fy + - \

?- X = 1 + 1 + 1.
X = 1 + 1 + 1 (or X = +(+(1, 1), 1)).

To get a value, it is necessary to use is

?- X = 1 + 1 + 1, Y is X.
X = 1 + 1 + 1, Y = 3.

If the arithmetic expression is not valid, is/2 returns an error, as in

?- X is 1 + 1 + a.
Error

because a is not a number, or as in

?- X is 1 + 1 + Z.
Error

because Z is not instantiated to a number. But

?- Z = 2, X is 1 + 1 + Z.
Z = 2, X = 4

is correct because Z has a numerical value when X is evaluated.
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A.10.3 Comparison Operators

Comparison operators process arithmetic and literal expressions. They evaluate arith-
metic expressions to the left and to the right of the operator before comparing them,
for example:

?- 1 + 2 < 3 + 4.
Yes

Comparison operators for literal expressions rank terms according to their lexical
order, for example:

?- a @< b.
Yes

Standard Prolog defines a lexical ordering of terms that is based on the ASCII
value of characters and other considerations. Table A.4 shows a list of comparison
operators for arithmetic and literal expressions.

Table A.4. Comparison operators.

Arithmetic comparison Literal term comparison
Equality operator =:= ==
Inequality operator =\= \==
Inferior < @<
Inferior or equal =< @=<
Superior > @>
Superior or equal >= @>=

It is a common mistake of beginners to confuse the arithmetic comparison (=:=),
literal comparison (==), and even sometimes unification (=). Unification is a logi-
cal operation that finds two substitutions to render two terms identical; an arithmetic
comparison computes the numerical values of the left and right expressions and com-
pares their resulting value; a term comparison compares literal values of terms but
does not perform any operation on them. Here are some examples:

?- 1 + 2 =:= 2 + 1.
Yes

?- 1 + 2 == 1 + 2.
Yes

?- 1 + 2 = 2 + 1.
No

?- 1 + 2 == 2 + 1.
No

?- 1 + 2 = 1 + 2.
Yes

?- 1 + X == 1 + 2.
No

?- 1 + X = 1 + 2.
X = 2

?- 1 + a == 1 + a.
Yes

?- 1 + X =:= 1 + 2.
Error
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A.10.4 Lists and Arithmetic: The length/2 Predicate

The length/2 predicate determines the length of a list

?- length([a, b, c], 3).
Yes

?- length([a, [a, b], c], N).
N = 3

length(+List, ?N) traverses the list List and increments a counter N. Its
definition in Prolog is:

length([],0).
length([X | XS], N) :-
length(XS, N1),
N is N1 + 1.

The order of subgoals in the rule is significant because N1 has no value until
Prolog has traversed the whole list. This value is computed as Prolog pops the recur-
sive calls from the stack. Should subgoals be inverted, the computation of the length
would generate an error telling that N1 is not a number.

A.10.5 Lists and Comparison: The quicksort/2 Predicate

The quicksort/2 predicate sorts the elements of a list [H | T]. It first selects
an arbitrary element from the list to sort, here the head, H. It splits the list into two
sublists containing the elements smaller than this arbitrary element and the elements
greater. Quicksort then sorts both sublists recursively and appends them once
they are sorted. In this program, the before/2 predicate compares the list elements
using the @</2 literal operator.

% quicksort(+InputList, -SortedList)

quicksort([], []) :- !.
quicksort([H | T], LSorted) :-
split(H, T, LSmall, LBig),
quicksort(LSmall, LSmallSorted),
quicksort(LBig, LBigSorted),
append(LSmallSorted, [H | LBigSorted], LSorted).

split(X, [Y | L], [Y | LSmall], LBig) :-
before(Y, X),
!,
split(X, L, LSmall, LBig).

split(X, [Y | L], LSmall, [Y | LBig]) :-
!,
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split(X, L, LSmall, LBig).
split(_, [], [], []) :- !.

before(X, Y) :- X @< Y.

A.11 Some Other Built-in Predicates

The set of built-in predicates may vary according to Prolog implementations. Here is
a list common to many Prologs. Consult your reference manual to have the complete
list.

A.11.1 Type Predicates

The type predicates check the type of a term. Their mode of use is
type_predicate(?Term).

• integer/1: Is the argument an integer?

?- integer(3).
Yes

?- integer(X).
No

• number/1: Is the argument a number?

?- number(3.14).
Yes

• float/1: Is the argument a floating-point number?
• atom/1: Is the argument an atom?

?- atom(abc).
Yes

?- atom(3).
No

• atomic/1: Is the argument an atomic value, i.e., a number or an atom?
• var/1: Is the argument a variable?

?- var(X).
Yes

?- X = f(Z), var(X).
No

• nonvar/1: The opposite of var/1.
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?- nonvar(X).
No

• compound/1: Is the argument a compound term?

?- compound(X).
No

?- compound(f(X, Y)).
Yes

• ground/1: Is the argument a ground term?

?- ground(f(a, b)).
Yes

?- ground(f(a, Y)).
No

A.11.2 Term Manipulation Predicates

The term manipulation predicates enable us to access and modify elements of com-
pound terms.

• The built-in predicate functor(+Term, ?Functor, ?Arity) gets the
principal functor of a term and its arity.

?- functor(father(ulysses, telemachus), F, A).
F = father, A = 2

functor also returns the most general term given a functor name and an
arity. Functor and Arity must then be instantiated: functor(-Term,
+Functor, +Arity)

?- functor(T, father, 2).
T = father(X, Y)

• The predicate arg(+N, +Term, ?X) unifies X to the argument of rank N in
Term.

?- arg(1, father(ulysses, telemachus), X).
X = ulysses

• The operator Term =.. List, also known as the univ predicate, transforms a
term into a list.

?- father(ulysses, telemachus) =.. L.
L = [father, ulysses, telemachus]

?- T =.. [a, b, c].
T = a(b, c)
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Univ has two modes of use: +Term =.. ?List, or -Term =.. +List.
• The predicate name(?Atom, ?List) transforms an atom into a list of ASCII

codes.

?- name(abc, L).
L = [97, 98, 99]

?- name(A, [97, 98, 99]).
A = abc

Standard Prolog provides means to encode strings more naturally using double
quotes. Thus

?- "abc" = L.
L = [97, 98, 99]

A.12 Handling Run-Time Errors and Exceptions

Standard Prolog features a mechanism to handle run-time errors. An error or excep-
tion occurs when the execution cannot be completed normally either successfully or
by a failure. Examples of exceptions include division by zero, the attempt to eval-
uate arithmetically nonnumerical values with is/2, and calling a noninstantiated
variable in the body of a rule:

?- X is 1/0.
ERROR: //2: Arithmetic evaluation error: zero_divisor

?- X is 1 + Y.
ERROR: Arguments are not sufficiently instantiated

?- X.
ERROR: Arguments are not sufficiently instantiated

In the normal course of a program, such faulty clauses generate run-time errors
and stop the execution. The programmer can also trap these errors and recover from
them using the catch/3 built-in predicate.

catch(+Goal, ?Catcher, ?Recover) executesGoal and behaves like
call/1 if no error occurs. If an error is raised and unifies with Catcher,catch/3
proceeds with Recover and continues the execution.

Standard Prolog defines catchers of built-in predicates under the form of the
term error(ErrorTerm, Information), where ErrorTerm is a standard
description of the error and Information depends on the implementation. The
query:

?- catch((X is 1 + Y), Error, (write(Error),nl,fail)).
error(instantiation_error,
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context(system: (is)/2, _GXyz))

No

attempts to execute X is Y + 1, raises an error, and executes the recover goal,
which prints the error and fails. The constant instantiation_error is part of
the set of error cases defined by Standard Prolog.

Built-in predicates execute a throw/1 to raise exceptions when they detect an
error. The throw predicate immediately goes back to a calling catch/3. If there
is no such catch, by default, the execution is stopped and the control is transferred
to the user.

User-defined predicates can also make use of throw(+Exception) to throw
an error, as in:

throw_error :- throw(error(error_condition,context)).

The corresponding error can be caught as in the query:

?- catch(throw_error, Error, (write(Error),nl,fail)).
error(error_condition, context)

No

A.13 Dynamically Accessing and Updating the Database

A.13.1 Accessing a Clause: The clause/2 Predicate

The built-in predicate clause(+Head, ?Body) returns the body of a clause
whose head unifies with Head. Let us illustrate this with the program:

hero(ulysses).
heroin(penelope).

daughter(X, Y) :-
mother(Y, X),
female(X).

daughter(X, Y) :-
father(Y, X),
female(X).

and the query:

?- clause(daughter(X, Y), B).
B = (mother(Y, X), female(X));
B = (father(Y, X), female(X));
No

?- clause(heroin(X), B).
X = penelope, B = true.
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A.13.2 Dynamic and Static Predicates

The built-in predicatesasserta/1,assertz/1,retract/1, and abolish/1
add or remove clauses – rules and facts – during the execution of a program. They
allow to update the database – and hence to modify the program – dynamically.

A major difference between Prolog implementations is whether the system in-
terprets the program or compiles it. Roughly, an interpreter does not change the
format of rules and facts to run them. A compiler translates clauses into a machine-
dependent code or into more efficient instructions (Maier and Warren 1988). A com-
piled program runs much faster then.

Compiling occurs once at load time, and the resulting code is no longer modifi-
able during execution. To run properly, the Prolog engine must be told which pred-
icates are alterable at run-time – the dynamic predicates – and which ones will re-
main unchanged – the static predicates. Prolog compiles static predicates and runs
dynamic predicates using an interpreter.

A predicate is static by default. Dynamic predicates must either be declared using
the dynamic/1 directive or be entirely created by assertions at run time. In the
latter case, the first assertion of a clause declares automatically the new predicate
to be dynamic. The directive specifying that a predicate is dynamic precedes all its
clauses, if any. For example, the program:

:- dynamic parent/2, male/1.
...
parent(X, Y) :-
...
male(xy).
...

declares that parent/2 and male/1 clauses may be added or removed at run time.
The predicates asserta/1, assertz/1, retract/1, and abolish/1

can modify clauses of dynamic predicates only. Adding or removing a clause for
a static predicate raises an error condition.

A.13.3 Adding a Clause: The asserta/1 and assertz/1 Predicates

The predicate asserta(+P) adds the clause P to the database. P is inserted just
before the other clauses of the same predicate. As we have seen before, the predicate
corresponding to the clause P must be dynamic: declared using the dynamic/1
directive or entirely asserted at run time.
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% State of the database
% Before assertion
% hero(ulysses).
% hero(hector).

?- asserta(hero(achilles)).
% State of the database
% After assertion
% hero(achilles).
% hero(ulysses).
% hero(hector).

The predicate assertz/1 also adds a new clause, but as the last one of the proce-
dure this time.

Adding rules is similar. It requires double parentheses, as in

asserta((P :- B, C, D)).

However, it is never advised to assert rules. Modifying rules while running a
program is rarely useful and may introduce nasty bugs.

Novice Prolog programmers may try to communicate the results of a procedure
by asserting facts to the database. This is not a good practice because it hides what
is the real output of a predicate. Results, especially intermediate results, should be
passed along from one procedure to another using arguments. Assertions should only
reflect a permanent change in the program state.

A.13.4 Removing Clauses: The retract/1 and abolish/2 Predicates

The built-in predicates retract/1 and abolish/1 remove clauses of a dynamic
predicate. retract(+P) retracts clause P from the database.

% State of the database
% Before removal
% hero(ulysses).
% hero(achilles).
% hero(hector).

?- retract(hero(hector)).
% State of the database
% After
% hero(ulysses).
% hero(achilles).

?- retract(hero(X)).
X = ulysses ;
X = achilles ;
No
?- hero(X).
No
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The predicate abolish(+Predicate/Arity) removes all clauses of Predi-
cate with arity Arity from the database.

A.13.5 Handling Unknown Predicates

When a static predicate is called and is not in the database, it is often a bug. A
frequent cause is due to wrong typing as, for example, parnet(X, Y) instead of
parent(X, Y), where n and e are twiddled. For this reason, by default, Prolog
raises an error in the case of such a call.

An effect of dynamic/1 is to declare a predicate to the Prolog engine. Such a
predicate ‘exists’ then, even if it has no clauses. A call to a dynamic predicate that has
no clauses in the database is not considered as an error. It fails, simply and silently.

The Prolog engine behavior to calls to unknown predicates can be modified using
the unknown/2 directive:

:- unknown(-OldValue, +NewValue).

where OldValue and NewValue can be:

• warning – A call to an unknown predicate issues a warning and fails.
• error – A call to an unknown predicate raises an error. As we saw, this is the

default value.
• fail – A call to an unknown predicate fails silently.

A Prolog flag also defines this behavior. It can be set by set_prolog_flag/2:

?- set_prolog_flag(+FlagName, +NewValue).

where FlagName is set to unknown and possible values are error, warning,
or fail. The current flag status is obtained by current_prolog_flag/2:

?- current_prolog_flag(+FlagName, ?Value).

A.14 All-Solutions Predicates

The second-order predicates findall/3, bagof/3, and setof/3 return all the
solutions to a given query. The predicate findall is the basic form of all-solutions
predicates, while bagof and setof are more elaborate. We exemplify them with
the database:

character(ulysses, iliad).
character(hector, iliad).
character(achilles, iliad).
character(ulysses, odyssey).
character(penelope, odyssey).
character(telemachus, odyssey).
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findall(+Variable, +Goal, ?Solution) unifies Solution with
the list of all the possible values of Variable when querying Goal.

?- findall(X, character(X, iliad), B).
B = [ulysses, hector, achilles]

?- findall(X, character(X, Y), B).
B = [ulysses, hector, achilles, ulysses, penelope,
telemachus]

The predicate bagof(+Variable, +Goal, ?Solution) is similar to
findall/3, except that it backtracks on the free variables of Goal:

?- bagof(X, character(X, iliad), Bag).
Bag = [ulysses, hector, achilles]

?- bagof(X, character(X, Y), Bag).
Bag =[ ulysses, hector, achilles], Y = iliad ;
Bag = [ulysses, penelope, telemachus], Y = odyssey ;
No.

Variables in Goal are not considered free if they are existentially quantified.
The existential quantifier uses the infix operator “ˆ”. Let X be a variable in Goal.
XˆGoal means that there exists X such that Goal is true. bagof/3 does not back-
track on it. For example:

?- bagof(X, Y^character(X, Y), Bag).
Bag = [ulysses, hector, achilles, ulysses,
penelope, telemachus]

?- bagof(X, Y^(character(X, Y), female(X)), Bag).
Bag = [penelope]

The predicate setof(+Variable, +Goal, ?Solution) does the same
thing as bagof/3, except that the Solution list is sorted and duplicates are re-
moved from it:

?- setof(X, Y^character(X, Y), Bag).
Bag = [achilles, hector, penelope, telemachus,
ulysses]

A.15 Fundamental Search Algorithms

Many problems in logic can be represented using a graph or a tree, where finding a
solution corresponds to searching a path going from an initial state to a goal state.
The search procedure starts from an initial node, checks whether the current node
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meets a goal condition, and if not, goes to a next node. The transition from one
node to a next one is carried out using a successor predicate, and the solution is the
sequence of nodes traversed to reach the goal. In the context of search, the graph is
also called the state space.

In this section, we will review some fundamental search strategies and as an
application example, we will try to find our way through the labyrinth shown in
Fig. A.9. As we saw, Prolog has an embedded search mechanism that can be used
with little adaptation to implement other algorithms. It will provide us with the Ari-
adne’s thread to remember our way in the maze with minimal coding efforts.

Room 1

Room 2

Room 3

Room 6

Room 7

Room 4 Room 8

Room 5

Room 9

Fig. A.9. The graph representing the labyrinth.

A.15.1 Representing the Graph

We use a successor predicate s(X, Y) to represent the graph, where Y is the suc-
cessor of X. For the labyrinth, the s/2 predicate describes the immediate links from
one room to another. The links between rooms are:

link(r1, r2). link(r1, r3). link(r1, r4). link(r1,
r5). link(r2, r6). link(r2, r7). link(r3, r6).
link(r3, r7). link(r4, r7). link(r4, r8). link(r6,
r9).

Since links can be traversed both ways, the s/2 predicate is:
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s(X, Y) :- link(X, Y).
s(X, Y) :- link(Y, X).

The goal is expressed as:

goal(X) :- minotaur(X).

where

minotaur(r8).

Finally, we could associate a cost to the link, for instance, to take into account its
length. The predicate would then be:

s(X, Y, Cost).

A.15.2 Depth-First Search

A depth-first search is just the application of the Prolog resolution strategy. It ex-
plores the state space by traversing a sequence of successors to the initial node until
it finds a goal. The search goes down the graph until it reaches a node without suc-
cessor. It then backtracks from the bottom to the last node that has successors.

Searching a path in a labyrinth is then very similar to other programs we have
written before. It consists of a first rule to describe the goal condition and sec-
ond recursive one to find a successor node when the condition is not met. The
depth_first_search(+Node, -Path) predicate uses the initial node as in-
put and returns the path to reach the goal:

%% depth_first_search(+Node, -Path)
depth_first_search(Node, [Node]) :-
goal(Node).

depth_first_search(Node, [Node | Path]) :-
s(Node, Node1),
depth_first_search(Node1, Path).

This short program does not work, however, because the path could include in-
finite cycles: Room 2 to Room 6 to Room 2 to Room 6. . . To prevent them, we
need to remember the current path in an accumulator variable and to avoid the
successors of the current node that are already members of the path. We use a
depth_first_search/3 auxiliary predicate, and the new program is:

%% depth_first_search(+Node, -Path)
depth_first_search(Node, Path) :-
depth_first_search(Node, [], Path).

%% depth_first_search(+Node, +CurrentPath,-FinalPath)
depth_first_search(Node, Path, [Node | Path]) :-
goal(Node).
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depth_first_search(Node, Path, FinalPath) :-
s(Node, Node1),
\+ member(Node1, Path),
depth_first_search(Node1, [Node | Path],FinalPath).

The result of the search is:

?- depth_first_search(r1, L).
L = [r8, r4, r7, r3, r6, r2, r1] ;
L = [r8, r4, r7, r2, r1] ;
L = [r8, r4, r7, r2, r6, r3, r1] ;
L = [r8, r4, r7, r3, r1] ;
L = [r8, r4, r1] ;
No
?-

A.15.3 Breadth-First Search

The breadth-first search explores the paths in parallel. It starts with the first node, all
the successors of the first node, all the successors of the successors, and so on, until
it finds a solution.

If the list [Node | Path] describes a path to a node, the search needs to ex-
pand all the successors of Node. It generates the corresponding paths as lists. There
are as many lists as there are successors to Node. The search then sets the successors
as the heads of these lists. This is done compactly using the bagof/3 predicate:

expand([Node | Path], ExpandedPaths) :-
bagof(

[Node1, Node | Path],
(s(Node, Node1), \+ member(Node1, Path)),
ExpandedPaths).

As with the depth-first search, the breadth-first search consists of two rules. The
first rule describes the goal condition. It extracts the first path from the list and
checks whether the head node is a goal. The second rule implements the recur-
sion. It expands the first path – the head of the list – into a list of paths that go
one level deeper in the graph and appends them to the end of the other paths. The
breadth_first_search(+Node, -Path) predicate uses the initial node as
input and returns the path to reach the goal. The program needs to start with a list of
lists, and it uses the auxiliary predicate bf_search_aux/2.

%% breadth_first_search(+Node, -Path)
breadth_first_search(Node, Path) :-
bf_search_aux([[Node]], Path).

bf_search_aux([[Node | Path] | _], [Node | Path]) :-
goal(Node).
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bf_search_aux([CurrentPath | NextPaths],
FinalPath) :-

expand(CurrentPath, ExpandedPaths),
append(NextPaths, ExpandedPaths, NewPaths),
bf_search_aux(NewPaths, FinalPath).

The program is not completely correct, however, because expand/2 can fail
and make the whole search fail. A failure of expand/2means that the search cannot
go further in this path and it has found no goal node in it. We can remove the path
from the list then. To reflect this, we must add a second rule to expand/2 that sets
the path to the empty list and prevents the first rule from backtracking:

expand([Node | Path], ExpandedPaths) :-
bagof(

[Node1, Node | Path],
(s(Node, Node1), \+ member(Node1, Path)),
ExpandedPaths),

!.
expand(Path, []).

The result of the search is:

?- breadth_first_search(r1, L).
L = [r8, r4, r1] ;
L = [r8, r4, r7, r2, r1] ;
L = [r8, r4, r7, r3, r1] ;
L = [r8, r4, r7, r3, r6, r2, r1] ;
L = [r8, r4, r7, r2, r6, r3, r1] ;
No
?-

The breadth-first search strategy guarantees that it will find the shortest path to
the solution. A disadvantage is that it must store and maintain all exploration paths
in parallel. This requires a huge memory, even for a limited search depth.

A.15.4 A* Search

The A* search is a variation and an optimization of the breadth-first search. Instead
of expanding the first path of the list, it uses heuristics to select a better candidate.
While searching the graph, A* associates a value to paths it traverses. This value is
a function f of the node being traversed. f(n) at node n is the sum of two terms
f(n) = g(n) + h(n), where g(n) is the length of the path used to reach node n and
h(n) is the estimate of the remaining length to reach the goal node. From a given
node, A* ranks the possible subsequent nodes minimizing f(n). It then explores
“best nodes” first and thus avoids a blind searching.

The main difficulty of the A* search is to find a suitable h function. Its presenta-
tion is outside the scope of this appendix. Russell and Norvig (2003) examine search
strategies in detail. Bratko (2001) describes an implementation of A* in Prolog.
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A.16 Input/Output

The first Prolog systems had only primitive input/output facilities. Standard Prolog
defines a complete new set of predicates. They represent a major change in the Pro-
log language, and although they are more flexible they are not universally accepted
yet. This section introduces both sets of predicates. It outlines Standard Prolog in-
put/output predicates and predicates conforming to the older tradition of Edinburgh
Prolog. Most input/output predicates are deterministic, that is, they give no alterna-
tive solutions upon backtracking.

A.16.1 Reading and Writing Characters with Edinburgh Prolog

In Edinburgh Prolog, reading characters from the keyboard and writing to the screen
is carried out using get0/1 and put/1. Both predicates process characters using
their ASCII codes. get0/1 unifies with −1 when it reaches the end of a file. Here
are some examples of use:

?- get0(X).
a ?

X = 97

?- put(65).
a

?- get0(X).
^D

X = -1

A.16.2 Reading and Writing Terms with Edinburgh Prolog

The built-in predicatesread/1 and write/1 read and write terms from the current
input and output streams. read(?Term) reads one term:

?- read(X).
character(ulysses, odyssey).

X = character(ulysses, odyssey)

where the input term must be terminated by a period. When reaching the end of a
file, X unifies with the build-in atom end_of_file:

?- read(X).
^D
X = end_of_file
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Writing terms is similar. write(+Term) writes one term to the current output
stream and nl/0 prints a new line:

?- T = character(ulysses, odyssey), write(T), nl.
character(ulysses, odyssey)

T = character(ulysses, odyssey)
?-

A.16.3 Opening and Closing Files with Edinburgh Prolog

Prolog input and output predicates normally write on the screen – the standard out-
put – and read from the keyboard – the standard input. The predicates see/1 and
tell/1 redirect the input and output so that a program can read or write any file.

see/1 and tell/1 open a file for reading and for writing. Then input/output
predicates such as get0/1, read/1 or put/1, write/1 are redirected to the
current open file. Several files may be open at the same time. The program switches
between open files using see/1 or tell/1 until they are closed. seen/0 and
told/0 close the open input and the open output, respectively, and return to the
standard input/output, that is, to the keyboard and the screen. Let us show this with
an example.

see(in_file), Opens in_file as the current input stream.
see(user), The current stream becomes the user – the key-

board.
see(in_file), in_file becomes the current input stream

again with the reading the position it had before.
seen, Closes the current input stream. The current

stream becomes the keyboard.
seeing(IN_STREAM), IN_STREAM unifies with the current input

stream.
tell(out_file), Opens out_file as the current output stream

(creates a new file or empties a previously exist-
ing file).

telling(OUT_STREAM), OUT_STREAM unifies with the current output
stream.

tell(user), The current output stream becomes the user –
the screen.

told. Closes the current output stream. The current
output stream becomes the user.

Here is a short program to read a file:

read_file(FileName, CodeList) :-
see(FileName),
read_list(CodeList),
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seen.

read_list([C | L]) :-
get0(C),
C =\= -1, % end of file
!,
read_list(L).

read_list([]).

A.16.4 Reading and Writing Characters with Standard Prolog

Standard Prolog uses streams to read and write characters. A stream roughly cor-
responds to an open file. Streams are divided into output streams or sinks, and in-
put streams or sources. By default, there are two current open streams: the standard
input stream, which is usually the keyboard, and the standard output stream, the
screen. Other streams are opened and closed using open/4, open/3, close/1,
and close/2.

The predicates to read and write a character are get_char/1, get_char/2,
put_char/1, and put_char/2:

• get_char(?Char) unifies Char with the next character of the current input
stream.

• get_char(+Stream, ?Char) unifies Char with the next character of the
open input stream Stream. get_char/1 and get_char/2 predicates unify
with end_of_file when they reach the end of a file.

• put_char(+Char) writes Char to the current output stream.
• put_char(+Stream, ?Char) writes Char to the open output Stream.
• nl/0 and nl(+Stream) write a new line to the current output stream or to

Stream.

Here is a short example:

?- get_char(X).
a ?

X = a

?- put_char(a).
a

?- get_char(X).
^D

X = end_of_file
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Instead of reading and writing characters, we may want to read or write their
numeric code, ASCII or Unicode, as with Edinburgh’s get0/1. The corresponding
Standard Prolog predicates are get_code/1, get_code/2, put_code/1, and
put_code/2.

The predicates get_char and get_code read a character or a code, remove
it from the input stream, and move to the next character. Sometimes it is useful to
read a character without removing it. The predicates peek_char and peek_code
do just that. They unify with the current character but stay at the same position and
leave the character in the stream.

A.16.5 Reading and Writing Terms with Standard Prolog

The Standard Prolog predicates read/1 and write/1 are identical to those of
Edinburgh Prolog:

• read(?Term) reads one term from the current input stream.
• write(+Term) writes a term to the current output stream.

read/2 and write/2 read and write terms from and to a file:

• read(+Stream, ?Term) reads a term from Stream.
• write(+Stream, ?Term) writes a term to Stream.

The predicates read_term and write_term read and write terms with a list
of options, either to the current input/output,read_term/2 and write_term/2,
or to a file, read_term/3 and write_term/3. The options make it possible to
adjust the printing format, for instance. They may depend on the implementation and
the operating system. Consult your manual to have the complete list. The predicates
read and write are equivalent to read_term and write_termwith an empty
list of options.

A.16.6 Opening and Closing Files with Standard Prolog

The predicates to open and close a stream are open/4, open/3, close/1, and
close/2:

• open(+SourceSink, +Mode, -Stream) opens the file SourceSink
in an input or output Mode. The Mode value is one of read, write, append,
or update. Stream unifies with the opened stream and is used for the subse-
quent input or output operations.

• open(+SourceSink, +Mode, -Stream, +Options) opens the file
with a list of options. open/3 is equivalent to open/4 with an empty list of
options. Consult your manual to have the complete list.

• close(+Stream) closes the stream Stream.
• close(+Stream, +Options) closes the stream Stream with a list of op-

tions. close/1 is equivalent to close/2 with an empty list of options.
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Here is a short program to read a file with Standard Prolog predicates:

read_file(FileName, CharList) :-
open(FileName, read, Stream),
read_list(Stream, CharList),
close(Stream).

read_list(Stream, [C | L]) :-
get_char(Stream, C),
C \== end_of_file, % end of file
!,
read_list(Stream, L).

read_list(_, []).

Other useful predicates include current_input/1, current_output/1,
set_input/1, and set_output/1:

• current_input(?Stream) unifies Stream with the current input stream.
• current_output(?Stream) unifies Stream with the current output.
• set_input(+Stream) sets Stream to be the current input stream.
• set_output(+Stream) sets Stream to be the current output stream.

A.16.7 Writing Loops

Programmers sometimes wonder how to write iterative loops in Prolog, especially
with input/output to read or to write a sequence of terms. This is normally done with
a recursive rule, as to read a file. Counting numbers down to 0 takes the form:

countdown(X) :-
number(X),
X < 0.

countdown(X):-
number(X),
X >= 0,
write(X), nl,
NX is X - 1,
countdown(NX).

For example,

?- countdown(4).
4
3
2
1
0
?-
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In some other cases, backtracking using the repeat/0 built-in predicate can
substitute a loop. The repeat/0 definition is:

repeat.
repeat :- repeat.

repeat never fails and when inserted as a subgoal, any subsequent backtrack-
ing goes back to it and the sequence of subgoals to its right gets executed again.
So, a sequence of subgoals can be executed any number of times until a condition
is satisfied. The read_write/1 predicate below reads and writes a sequence of
atoms until the atom end is encountered. It takes the form of a repetition (repeat)
of reading a term X using read/1, writing it (write/1), and a final condition (X
== end). It corresponds to the rule:

read_write :-
repeat,
read(X),
write(X), nl,
X == end,
!.

A.17 Developing Prolog Programs

A.17.1 Presentation Style

Programs are normally written once and then are possibly read and modified several
times. A major concern of the programmer should be to write clear and legible code.
It helps enormously with the maintenance and debugging of programs.

Before programming, it is essential first to have a good formulation and decom-
position of the problem. The program construction should then reflect the logical
structure of the solution. Although this statement may seem obvious, its implemen-
tation is difficult in practice. Clarity in a program structure is rarely attained from
the first time. First attempts are rarely optimal but Prolog enables an incremental
development where parts of the solution can be improved gradually.

A key to the good construction of a program is to name things properly. Cryptic
predicates or variable names, such as syntproc, def_code, X, Ynn, and so on,
should be banned. It is not rare that one starts with a predicate name and changes it
in the course of the development to reflect a better description of the solution.

Since Prolog code is compact, the code of a clause should be short to remain
easy to understand, especially with recursive programs. If necessary, the programmer
should decompose a clause into smaller subclauses. Cuts and asserts should be kept
to a minimum because they impair the declarativeness of a program. However, these
are general rules that sometimes are difficult to respect when speed matters most.

Before its code definition, a predicate should be described in comments together
with argument types and modes:
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% predicate(+Arg1, +Arg2, -Arg3).
% Does this and that
% Arg1: list, Arg2: atom, Arg3: integer.

Clauses of a same predicate must be grouped together, even if some Prologs
permit clauses to be disjoined. The layout of clauses should also be clear and adopt
common rules of typography. Insert a space after commas or dots, for instance. The
rule

pred1 :- pred2(c,d),e,f.

must be rejected because of sticking commas and obfuscated predicate names. Goals
must be indented with tabulations, and there should be one single goal per line. Then

A :-
B,
C,
D.

should be preferred to

A :- B, C, D.

except when the body consists of a single goal. The rule

A :- B.

is also acceptable.

A.17.2 Improving Programs

Once a program is written, it is generally possible to enhance it. This section intro-
duces three techniques to improve program speed: goal ordering, memo functions,
and tail recursion.

Order of Goals. Ordering goals is meaningful for the efficiency of a program be-
cause Prolog tries them from left to right. The idea is to reduce the search space as
much as possible from the first goals. If predicate p1 has 1000 solutions in 1 s and
p2 has 1 solution taking 1000 hours to compute, avoid conjunction:

p1(X), p2(X).

A better ordering is:

p2(X), p1(X).
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Lemmas or Memo Functions. Lemmas are used to improve the program speed.
They are often exemplified with Fibonacci series. Fibonacci imagined around year
1200 how to estimate a population of rabbits, knowing that:

• A rabbit couple gives birth to another rabbit couple, one male and one female,
each month (one month of gestation).

• A rabbit couple reproduces from the second month.
• Rabbits are immortal.

We can predict the number of rabbit couples at month n as a function of the
number of rabbit couples at month n − 1 and n − 2:

rabbit(n) = rabbit(n − 1) + rabbit(n − 2)

A first implementation is straightforward from the formula:

fibonacci(1, 1).
fibonacci(2, 1).
fibonacci(M, N) :-
M > 2,
M1 is M - 1, fibonacci(M1, N1),
M2 is M - 2, fibonacci(M2, N2),
N is N1 + N2.

However, this program has an expensive double recursion and the same value
can be recomputed several times. A better solution is to store Fibonacci values in the
database using asserta/1. So an improved version is

fibonacci(1, 1).
fibonacci(2, 1).
fibonacci(M, N) :-
M > 2,
M1 is M - 1, fibonacci(M1, N1),
M2 is M - 2, fibonacci(M2, N2),
N is N1 + N2,
asserta(fibonacci(M, N)).

The rule is then tried only if the value is not in the database.
The generic form of the lemma is:

lemma(P):-
P,
asserta((P :- !)).

with “!” to avoid backtracking.
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Tail Recursion. A tail recursion is a recursion where the recursive call is the last
subgoal of the last rule, as in

f(X) :- fact(X).
f(X) :- g(X, Y), f(Y).

Recursion is generally very demanding in terms of memory, which grows with
the number of recursive calls. A tail recursion is a special case that the interpreter
can transform into an iteration. Most Prolog systems recognize and optimize it. They
execute a tail-recursive predicate with a constant memory size.

It is therefore significant not to invert clauses of the previous program, as in

f(X) :- g(X, Y), f(Y).
f(X) :- fact(X).

which is not tail recursive.
It is sometimes possible to transform recursive predicates into a tail recursion

equivalent, adding a variable as for length/2:

length(List, Length) :-
length(List, 0, Length).

length([], N, N).
length([X | L], N1, N) :-
N2 is N1 + 1,
length(L, N2, N).

It is also sometimes possible to force a tail recursion using a cut, for example,

f(X) :- g(X, Y), !, f(Y).
f(X) :- fact(X).

Exercises

A.1. Describe a fragment of your family using Prolog facts.

A.2. Using the model of parent/2 and ancestor/2, write rules describing fam-
ily relationships.

A.3. Write a program to describe routes between cities. Use a connect/2 predicate
to describe direct links between cities as facts, for example, connect(paris,
london), connect(london, edinburgh), etc., and write the route/2 re-
cursive predicate that finds a path between cities.

A.4. Unify the following pairs:

f(g(A, B), a) = f(C, A).
f(X, g(a, b)) = f(g(Z), g(Z, X)).
f(X, g(a, b)) = f(g(Z), g(Z, Y)).
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A.5. Trace the son/2 program.

A.6. What is the effect of the query

?- f(X, X).

given the database:

f(X, Y) :- !, g(X), h(Y).
g(a).
g(b).
h(b).

A.7. What is the effect of the query

?- f(X, X).

given the database:

f(X, Y) :- g(X), !, h(Y).
g(a).
g(b).
h(b).

A.8. What is the effect of the query

?- f(X, X).

given the database:

f(X, Y) :- g(X), h(Y), !.
g(a).
g(b).
h(b).

A.9. What is the effect of the query

?- \+ f(X, X).

given the databases of the three previous exercises (Exercises A.6–A.8)? Provide
three answers.

A.10. Write the last(?List, ?Element) predicate that succeeds if Element
is the last element of the list.

A.11. Write the nth(?Nth, ?List, ?Element) predicate that succeeds if
Element is the Nth element of the list.

A.12. Write the maximum(+List, ?Element) predicate that succeeds if Ele-
ment is the greatest of the list.
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A.13. Write the flatten/2 predicate that flattens a list, i.e., removes nested lists:

?- flatten([a, [a, b, c], [[[d]]]], L).
L = [a, a, b, c, d]

A.14. Write the subset(+Set1, +Set2) predicate that succeeds if Set1 is a
subset of Set2.

A.15. Write the subtract(+Set1, +Set2, ?Set3) predicate that unifies
Set3 with the subtraction of Set2 from Set1.

A.16. Write the union(+Set1, +Set2, ?Set3) predicate that unifies Set3
with the union of Set2 and Set1. Set1 and Set2 are lists without duplicates.

A.17. Write a program that transforms the lowercase characters of a file into their
uppercase equivalent. The program should process accented characters, for example,
é will be mapped to É.

A.18. Implement A* in Prolog.
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